

GMS-74

Geology and Mineral Resources Map of the Namorf Quadrangle, Malheur County, By Mark L. Ferns and James P. O'Brien Funded jointly by the Oregon Department of Geology and Mineral Industries, the State Lottery, and the U.S. Geological Survey COGEOMAP Program as part of a coeffort to map the west half of the 1° by 2° Boise sheet, eastern Oregon.

XRF analyses by XRAL

MINERAL RESOURCES

Overall mineral-resource potential for the quadrangle appears low, although gold resources may sample from the exhalative chert deposits in the NW 1/4 sec. 6, T. 21 S., R. 42 E., contains trace gold and antimony (sample 12, Table 2). These cherts are interpreted as surface indicators of suba springs. Several fault zones separating unit Tlr from unit Tds along the western edge of the quad filled with opaline quartz that in places has partially replaced vitrophyre in unit Th. Elevated conc arsenic and antimony, along with trace amounts of gold, were detected from samples along some of No other metallic or nonmetallic resources were recognized during mapping. Some of the partial vitrophyre in sec. 8, T. 21 S., R. 41 E., may be of interest to rockhounds.

GROUND-WATER RESOURCES

Major springs in the quadrangle appear to be concentrated on fault lines along the western ma quadrangle. Potential aquifers appear to be limited to the modern alluvial deposits (unit Qal) and terrace gravels (unit QTg) along the Malheur River.

GEOCHEMISTRY

Sample Preparation Samples for whole-rock analysis (Table 1) were crushed to minus 1/4-in. in a steel-jawed Braun crusher and split in a Jones-type splitter in the Oregon Department of Geology and Mineral Indus (DOGAMI) laboratory. A split of about 60 g was ground to minus 200 mesh in agate media by X-r Laboratories (XRAL) of Don Mills, Ontario. Samples for trace-element analysis of altered rocks (Table 2) were crushed to minus 1/4-in. and s

indicated above to obtain a nominal 250-g subsample. Each subsample was milled to about minus 2 chrome-steel media in an Angstrom disc mill in the DOGAMI laboratory. Each milled subsample again to produce two analytical samples: one to determine gold and one to determine the other tra **Chemical Analysis** Whole-rock analysis: X-ray fluorescence (XRF) analyses (Table 1) were performed by XRAL. 2 fused button for its analyses (1.3 g of sample roasted at 950 °C for one hour, fused with 5 g of lithi

tetraborate, and the melt cast into a button). Loss on ignition (LOI) was determined from weight h roasting. Trace-Element Analysis:

1. Gold-Bondar-Clegg, Ltd., of North Vancouver, British Columbia, performed the analyses for 1. Gold-Bondar-Clegg, Ltd., of North Vancouver, British Columbia, performed the analyses for g method employed was fire-assay preconcentration of the gold in a 20-g sample (gold was collected in silver), acid dissolution of the resulting bead, and a direct current plasma (DCP) emission spectrome The detection limit was 1 part per billion (ppb). 2. Fourteen trace elements-Geochemical Services, Inc., (GSI) of Sparks, Nevada, performed the 14 trace elements. The method employed a promitent acid dissolution/organia extraction of a 5 g ac Fourteen trace elements-Geochemical Services, Inc., (GS1) of Sparks, Nevada, performed the
trace elements. The method employed a proprietary acid dissolution/organic extraction of a 5-g sa
finish was by induction coupled plasma (ICP) emission spectrometry. GSI considers the digestion to
total metal contents except for gallium and thallium.
Eight trace elements-The DOGAMI laboratory performed the analyses for eight elements: ba
cobalt, chromium, iron, lithium, manganese, nickel, and tungsten. For the first seven elements, a 1-g
was digested with nitric and hydrofluoric acids, the solution taken to near-dryness with perchlorica

residue redissolved and taken to 100-ml volume with 10-percent nitric acid. The finish was by flam absorption and (for lithium) flame emission spectrometry. The digestion provides total metal conter barium and possibly chromium. Tungsten was determined by a method that gives semi-quantitative

1/4 g of sample fused with potassium pyrosulfate and dissolved with hydrochloric acid, an aliquot to stannous chloride and zinc dithiol, the tungsten extracted into 0.5 ml amyl acetate, and the colored visually compared with standards. The detection limit for tungsten was 5 ppm.

REFERENCES

Evans, J.G., 1990a, Geology and mineral resources map of the Jonesboro quadrangle, Malheur County, Oregon: Department of Geology and Mineral Industries Geological Map Series GMS-66, 1:24,000. Ferns, M.L., and O'Brien, J.P., 1992, Geology and mineral resources map of the Harper quadrangle, Malheur C Oregon Department of Geology and Mineral Industries Geological Map Series GMS-69, scale 1:24,000.

Fiebelkorn, R.B., Walker, G.W., MacLeod, N.S., McKee, E.H., and Smith, J.G., 1982, Index to K-Ar age determin state of Oregon: U.S. Geological Survey Open-File Report 82-596, 40 p. Haddock, G.H., 1967, The Dinner Creek welded ash-flow tuff of the Malheur Gorge area, Malheur County, Oreg Oreg., University of Oregon doctoral dissertation, 111 p. Jones, J.B., and Segnit, E.R., 1971, The nature of opal: I. Nomenclature and constituent phases: Journal of the G

Society of Australia, v. 18, pt. 1, p. 57-67. Kittleman, L.R., Green, A.R., Haddock, G.H., Hagood, A.R., Johnson, A.M., McMurray, J.M., Russell, R.G., and 967, Geologic map of the Owyhee region, Malheur County, Oregon: Eugene, Oreg., University of Oregon Natural History Bulletin 8, 1:125,000. Kittleman, L.R., Green, A.R., Hagood, A.R., Johnson, A.M., McMurray, J.M., Russell, R.G., and Weeden, D.A.,

stratigraphy of the Owyhee region, southeastern Oregon: Eugene, Oreg., University of Oregon Museum History Bulletin 1, 45 p. Palmer, A.R., 1983, The Decade of North American Geology 1983 geologic time scale: Geology, v. 11, no. 9, p. 50

Ramp, L., and Ferns, M.L., 1989, Geology and mineral resources map of the Double Mountain quadrangle, Malh Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-58, 1:24,000. Walker, G.W., 1990, Miocene and younger rocks of the Blue Mountains region, exclusive of the Columbia River I and associated mafic lava flows, in Walker, G.W., ed., Geology of the Blue Mountains region of Oregon, Washington; Cenozoic geology of the Blue Mountains region: U.S. Geological Survey Professional Paper Weeden, D.A., 1961, Geology of the Harper Basin area, Oregon. Preliminary report: Unpublished report on file Department of Geology and Mineral Industries (Malheur County), 39 p.

Table 1. Whole-rock analyses, Namorf guadrangle, Malheur County, Oregon¹

_											-				Ouida	- /	reent)					- 1			roop olo	manta /	(mm)		-
ap	Laboratory						UTM	Elev.		Map					Oxides	s (wt. pe	rcent)					1 mar 1			race ele	menus (pin)		
ter	no.	1/4	1/4	Sec.	T. (S.)	R. (E.)	coordinates	(ft)	Lithology	unit	SiO ₂	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	MnO	CaO	MgO	K20	Na ₂ O	P205	LOI	Total	Cr	Rb	Sr	Y	Zr	Nb	
Ą	AYB-200	SE	NE	29	20	41	4849920N 442520E	3,198	Rhyolite	Tir	72.2	12.8	0.42	2.72	0.03	0.62	0.21	4.22	4.82	0.09	1.54	100.0	15	135	161	73	575	19	-
В	AYB-201	NW	SW	32	20	41	4847860N 441160E	2,640	Icelandite	Th	55.1	13.4	2.22	12.1	0.19	5.96	2.72	1.79	3.60	0.45	2.00	99.7	14	59	319	<10	238	<10	
C	AYB-202	SW	SW	34	20	41	4847640N 444520E	2,640	Rhyolite	Tir	68.1	12.0	0.42	5.54	0.15	1.57	0.39	4.00	4.38	0.08	2.62	99.7	15	156	150	94	563	44	
D	AYB-203	SE	NW	6	21	41	4846960N 440240E	2,640	Rhyoli*e vitrophyre	Tir	68.5	12.1	0.67	4.21	0.10	1.69	0.49	5.16	2.55	0.15	3.77	99.6	24	156	189	61	281	10	2
E	AYB-204	NW	NW	8	21	41	4845780N 441600E	3,240	Mafic sill	Ты	46.5	16.3	1.03	9.97	0.17	9.35	8.83	0.61	2.25	0.26	4.08	99.5	135	53	379	<10	58	14	
F	AYB-205	SE	SE	9	21	41	4844200N	3,040	Basalt	Tdsb	50.5	15.5	0.99	10.0	0.19	10.1	5.48	0.63	2.72	0.25	2.54	99.0	174	18	342	23	76	12	

Map L	aboratory					57.005.000	UTM	Elev.		Мар	Ag	As	Au	Cu	Hg	Мо	Pb	Sb	TI	Zn	Bi	Cd	Ga	Se	Те	Ba	Co	Cr	Fe	Li	
no.	no.	1/4	1/4	Sec.	T.(S.)	R.(E.)	coordinates	(ft)	Lithology	unit	(ppm)	(ppm)	(ppb)	(ppm)	(wt.%)	(ppm)	1														
1	AYB-100	SW	NW	33	19	41	4854560N 443520E	3,120	Opalite	Tds	<0.015	9.98	2	5.75	<0.10	1.08	2.82	<0.25	<0.5	30.1	<0.25	0.223	2.96	<1.0	<0.5	483	5.2	63	1.22	3.4	
2	AYB-101	NE	NE	9	20	41	4855080N 443940E	3,000	Chalcedonic breccia	Tlr	0.026	19.5	2	2.79	<0.10	1.18	6.00	0.281	<0.5	64.9	<0.25	0.272	3.12	<1.0	<0.5	741	4.7	16	1.87	5.6	
3	AYB-102	SE	SE	16	20	41	4852380N 444040E	2,980	Opalite breccia	Tds	0.043	10.6	2	2.52	<0.10	0.293	4.29	<0.25	<0.5	33.4	<0.25	0.167	2.61	<1.0	<0.5	392	2.4	22	0.58	0.9	
4	AYB-103	NE	SW	20	20	41	4851000N 441900E	3,740	Chalcedonic vein	Tir	0.017	6.17	<1	8.76	<0.10	3.92	1.56	<0.25	<0.5	21.7	<0.25	0.150	0.949	<1.0	<0.5	45	0.5	275	2.31	3.5	
5	AYB-134	NW	NW	23	20	41	4852060N 446060E	2,660	Silicified tuff	Tds	0.05	20.1	<1	51.9	<0.10	3.00	5.75	1.32	<0.5	53.9	<0.25	0.196	2.97	<1.0	<0.5	648	12.4	52	4.34	14.8	
6	AYB-104	SW	NW	24	20	41	4851320N 447680E	2,700	Opalite	Tds	0.025	7.78	<1	8.73	<0.10	0.549	0.945	<0.25	<0.5	8.59	<0.25	<0.10	1.13	<1.0	<0.5	28	2.4	34	0.56	4.8	
7	AYB-105	SW	NW	27	20	41	4849460N 445260E	2,600	Silicified rhyolite breccia	Tir	0.018	9.57	<1	3.33	<0.10	0.924	4.58	<0.25	<0.5	47.1	<0.25	<0.10	2.83	<1.0	<0.5	290	3.6	20	2.95	5.1	
8	AYB-106	SW	SW	34	20	41	4847600N 444500E	2,540	Silicified pyritic rhyolite breccia	Tlr	0.032	334	<1	4.08	<0.10	3.22	5.47	3.06	<0.5	114	<0.25	0.207	4.65	<1.0	<0.5	815	6.6	35	7.88	9.1	
9	AYB-107	SW	NW	36	20	41	4848400N 447840E	3,220	Fe-stained tuff	Tds	0.057	39.9	3	3.23	<0.10	1.17	5.05	0.591	<0.5	12.2	<0.25	0.219	2.35	<1.0	<0.5	284	3.9	12	0.47	1.6	
10	AYB-108	SW	SE	5	21	41	4845980N 442040E	3,320	Opalite breccia	Tds	0.036	6.36	3	4.79	<0.10	0.565	4.87	<0.25	<0.5	59.0	<0.25	0.190	3.09	<1.0	<0.5	471	4.0	42	1.35	1.9	
11	AYB-109	NW	SE	4	21	41	4846280N 443860E	2,840	Opalite	Tds	0.026	4.41	1	5.93	<0.10	0.751	2.13	<0.25	<0.5	42.7	<0.25	0.127	3.10	<1.0	<0.5	204	3.2	54	1.17	6.2	
12	AYB-110	NW	SW	3	21	41	4846360N 444620E	2,900	Opalite	Tds	0.032	3.36	<1	24.1	<0.10	3.40	0.597	<0.25	<0.5	4.39	<0.25	<0.10	<0.50	<1.0	<0.5	5	0.7	207	0.44	4.5	
13	AYB-111	NE	NW	3	21	41	4847200N 445060E	2,840	Opalite	Tds	0.026	5.49	<1	3.22	<0.10	2.37	1.61	<0.25	<0.5	72.2	<0.25	<0.10	4.91	<1.0	<0.5	636	6.9	94	1.82	21.1	
14	AYB-116	NW	NW	31	21	42	4847200N 449540E	3,000	Ferruginous chalcedonic cherts	Tdsa	0.043	10.5	2	9.73	<0.10	3.13	4.32	0.429	<0.5	25.7	<0.25	0.102	3.99	<1.0	<0.5	308	3.5	293	1.15	109	
15	AYB-112	SE	NW	8	21	41	4845500N 441940E	3,400	Opalite breccia	Tds	0.024	3.18	2	4.68	<0.10	0.410	3.84	<0.25	<0.5	26.0	<0.25	0.218	1.88	<1.0	<0.5	315	2.5	34	0.87	9.0	
16	AYB-113	SW	NE	8	21	41	4845320N 442420E	3,200	Opalite	Tds, Tir	0.036	3.17	<1	10.3	<0.10	0.453	1.41	<0.25	<0.5	16.4	<0.25	0.112	2.60	<1.0	<0.5	24	1.0	49	0.72	1.6	
17	AYB-114	NE	SE	8	21	41	4845060N 442460E	3,240	Opalite	Tds, Tir	0.027	13.2	<1	7.11	<0.10	0.812	1.84	<0.25	<0.5	15.9	<0.25	<0.10	3.27	<1.0	<0.5	27	<0.05	80	0.67	1.4	
18	AYB-115	NW	NW	17	21	41	4844180N 441320E	3,440	Opalite	Tds	0.037	116	<1	13.0	<0.10	1.77	2.86	2.29	<0.5	23.5	<0.25	<0.10	3.54	<1.0	<0.5	133	4.8	33	2.01	4.5	

GEOLOGIC CROSS SECTIONS

		ISSN 0270	-952X	
, Oregon e Oregon ooperativ	e			
y occur. A amounts of aqueous ho hrangle are ncentration of the faul- ially opaliz	t s of t			
argin of th possibly tl	e he			
chipmunk istries ray Assay l split as				
200 mesh was split race eleme	nts.			
XRAL use hium loss durin				
or gold. The l in added ometer finis the analyses y sample. T to provide barium, 1-g sample c acid, and me atomic ent except ve results: treated wi ed complex	sh. s for The the for ith			
Oregon Oregon County, Oregoninations for Segon: Eugene	the			
e Geological nd Weeden, ron Museum ., 1965, Cenc n of Natural 503-504. liheur County 0. Basalt Grou Idaho, and · 1437, p. 101 e at Oregon	D.A., of vzoie v, p I-118.			
Ba 2,080 992 2,420 1,430 266 366				
		W pm)		
	17 < 10 <			
139 794	5 < 5 <			
612	22 <	5		
516 294	10 < 6 <			
	11 <			
40 149	4 < 5 <			
143	7 <			
	<4 <			
	11 < 10 <			
148	6 <			
117	6 <			
80 146	5 <			
			A'	
Tds	s Tdsp	Tds	Tds	