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7 2y o [ 4 Location of whole-rock XRF geochemical analysis sample - see Table 1 exposed south of Bottleneck springs are typically red in color, are less than 30 m wide, are ercent K.O (Samples 8 and 20; Table 1; Figure 1). The rhyolite is marked by relatively high The matrix also includes equigranular, elongate lens-shaped, intergrowths of quartz, alkali
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SN e . oh Tcha 05 . SRR Caldera margins - inferred; ball and bar on downthrown side esite (?) with abundant ragged vesicles and may be the feeder for unit Tma. This dike intrudes Pumice-lithic tuff of Steins Pillar (middle Eocene) — White, pale yellow, and green, and 2.78 to 3.82 weight percent K,O (Samples 7, 23, 29 and 42; Table 1; Figure 1). The rhyolite
- =5 . plateau forming basalt flows, is distinctly columnar jointed, and exceeds 100 m in width. Well- Tets non-welded pumice-lithic tuff that is in high-angle contact with unit Tcal above Mill Creek in the is marked by high levels of barium (905 ppm Ba) and low levels of niobium (12.0 ppm Nb).
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; (5640 ft) on the northeast to ~920 m (3020 ft) in McKay Creek on the southwest. Previous work John Day Formation pny! y . g 9 p y getorm i v pread, 9 a paly a ges. X Y )
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! X 1/, E ¢ : . . - erriam (1901), and Robinson and others (1990) and subdivided into: and moderately flattened, and are generally aligned in outcrop. In thin section, the tuff consists conglomerate is composed of boulder-sized clasts up to 1 m across of vesicular to closed-
- ? e area. Geology in the map area consists of: 1) a core of early Eocene (?), deeply eroded andesite ; of banded pumice, angular mafic lithic fragments composed of a plagioclase and pyroxene textured andesite suspended in a fine- to medium-grained, silica-cemented, sandstone matrix
i : V . % \ to dacite domes, flows, and shallow intrusions, 2) Eocene dacite to rhyolite tuff, domes, flows, and Crooked River caldera complex p » ang .  Trag P A plag anc py ) pen - 9 ' . i ! .
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| e N i 3 / g 4904 shallow intrusions of the Wildcat Mountain Caldera complex (McClaughry and others, 2007) that . . . . . . 7 A ; ) ) o - ; L A
~n— i ' B / ; . ) . g Intracaldera pumice-lithic tuff (Oligocene) — Gray to green, matrix-supported, indurated Anhedral, clear to white sanidine fragments are sparsely scattered in thin sections. Pumice, percent SiO,; 15.88-17.13 weight percent Al,O,; 0.88-1.08 TiO,; and 1.05-1.25 weight percent
I = : are inset into early Eocene rocks, 3) Eocene basaltic andesite and andesite flows that are uncon- Tit ¢ LGS \ . ' o ) i ) o A L ; 2 . T 273 2 .
i ¢ Y, B . . J to friable, pumice-lithic tuff, weathering to form angular chips and rounded, low-elevation hills. lithics, and crystals are enclosed in a devitrified glass and ash matrix. The unit includes a matrix- K,O (Samples 12 and 30; Table 1; Figure 1). Large landslide deposits (Qls) are commonly
— ; & formable across early Eocene (?) rocks, 4) late Eocene to Oligocene rhyolite tuff correlated to the e . ’ - ’ . . . . 2 . AR )
e % i < R . . ; ; . . Constituents include tan to green, well-rounded pumice fragments up to 0.06 m across and to clast-supported breccia composed of angular fragments of vitrophyre, that is exposed in the preserved downslope of the basal contact of unit Tcau flows. The andesite is middle Eocene in
= = 4 R : John Day Formation, including tuff deposits associated with the Oligocene Crooked River caldera ’ . g . . . . . - . LOA /30 : . : -
A b NS ol W SN complex (McClaughry and Ferns 2006a), and 5) Miocene (?) basalt and trachyandesite brown to black, angular to subround mafic and silicic rock fragments as much as 0.1 m across. north ¥ of sec. 26, T. 13 S., R.17 E. On the basis of geochemical analysis, the pumice-tuff is age on the basis of a “°Ar/*Ar (plagioclase) radiometric age date determination of 41.50 + 0.48
\ } =S =N f . D ' : - ’ . The matrix contains a mixture of ash, glass shards, and sparse sanidine feldspar crystals. On peraluminous with 75.08 weight percent SiO,; 13.53 weight percent ALLO,; and 4.31 weight Ma in the Dutchman Creek 7.5' quadrangle (McClaughry and others, in prep).
@ ; \ X < : The volcanic succession in the map area preserves a local transition from calc-alkaline, the basis of geochemical analysis reported in McClaughry and Ferns (2006a), the unit i percent KO (Sample 43: Table 1 Figure 1). Marked by moderate levels of barium (657 ppm Ba)
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) 9 i v Formation to large-scale caldfera—forming sil)icic eruptions related to tr?e Jo’i:"m Day Formation rhyolite tuff, with 75.47 weight percent SiO,, 12.65 weight percent Al,O,, and 1.64 weight percent and low levels of niobium (13.3 ppm Nb). The tuff is interpreted as intracaldera-fill to the Wildcat Porphyritic dacite and andesite intrusive rocks (Eocene) — Plagioclase- and
i 7 — = A ! _ » _ ; . : Na,O. The tuff contains relatively high levels of zirconium (512 ppm Zr) and yttrium (96 ppm Y). Mountain caldera. Stratigraphic position of the tuff of Steins Pillar above unit Tcau andesite hornblende-phyric dikes and irregularly shaped stocks. The unit includes a belt of northwest
7 ~ This report provides a preliminary, general outline of the progression of local volcanism, but the 2 =Y e o ) . - - : : . ;
&) 5 . . . It Unit Tjt is more than 335 m thick in the vicinity of Prineville (south of the map area). The section (41.50 + 0.48 Ma) and beneath the rhyolite of Hash Rock (39.35 + 0.30 Ma) indicates the tuff trending dikes and plugs that intrude aphyric unit Tcal flows between Lemon Creek and McKay
: : ! I ™ temporal and spatial relations between the calk-alkaline and largely silicic episode(s) has not > SER . ! : . . . e . :
‘ : = S | . s ’ : of tuff thins to the north where it is in abrupt high-angle contact with and onlaps dacite and may be temporally correlative with the basal member A ash flow tuff identified in the John Day Creek. The unit also includes a small stock at the north end of Johnson Creek. Northwest
= i = : 0 3 been fully determined. Within the map area, the general progression of Clarno Formation calk- ) . Ly : : ‘ . ) - . ) ! : . : .
0 v \ 3 . - P . - o andesite lava flows of unit Tcal. The unit is interpreted as caldera-fill facies to the Crooked River Formation (Peck, 1964; Robinson, 1975; Swanson and Robinson, 1968). The member A tuff trending dikes are typically blue-gray to dark gray on fresh surfaces, massive to platy jointed, and
“:E /] ) (i alkaline volcanism is as follows: 1) emplacement of early Eocene (?) Clarno Formation dacitic ) A - : . - . . | d with alt ting fi d ined bands. Rounded talli lutoni
27 = / S I : ) n. s : - caldera (McClaughry and Ferns, 2006a,c; 2007a) and is correlative with the tuff of Smith Rock has a radiometric age of 39.22 + 0.03 Ma (near Clarno), 39.72 + 0.03 Ma (Painted Hills ~20 km are layered with alternaling fine- and coarse-grained bands. Rounded, crystalline piutonic
55 = i o and andesitic flows, domes, and shallow intrusions at ~ 50-55 Ma (?), 2) uplift and erosion of the 8 - . . . p . ) : :
o i ) ; 23 ; . ) . of Robinson and Stensland (1979) northeast of the map area) (single crystal Ar*/Ar®; Bestland and Retallack, 1994a, 1994b; xenoliths up to 0.04 m across are abundant. In thin section, these dikes consist of seriate-
N P = ) o early Eocene surface between ~ 50 and 45 Ma, and 3) bi-modal, basaltic andesite to peralumi- : . /A 30. G : : : . o
2N % 0 - ( Sl = ; ; g : ) ; Retallack and others, 2000) and 39.17 + 0.15 (near Ashwood) single crystal Ar*/Ar®°; Smith and textured medium-grained, plagioclase-, orthopyroxene-, clinopyroxene-, biotite-, horneblende-
= - = - /] nous, low-niobium rhyolite volcanism associated with the Wildcat Mountain caldera between 45- . . L : . : : : : .
& \ > / : P : L ) Welded tuff (Oligocene) — Isolated, cuesta-forming, densely welded, pumice-lithic tuff others, 1998). phyric dacite and medium-grained, plagioclase-, clinopyroxene-, orthopyroxene-phyric and
] - t T 35 Ma (?). Abundant crystalline xenoliths in Clarno Formation units in the map area suggest that Titg . o . S : : ] :
‘ N / b ! = local Clarno volcanism is related to a comagmatic granitic intrusion. Calk-alkaline, Clarno Forma- exposed in the southwest corner of the map area that is interpreted to be equivalent to the Tuff glomeroporphyntlc andesite. Phenocrysts and glqmer.ocrysts are enclosed in a fmg-gramgd,
— ) o o g 9 S . ! of Gravy Gulch, exposed on the south in the Eagle Rock 7.5 quadrangle (McClaughry and Rhyolite breccia pipes and dikes (middle Eocene) — Bleached white to orange, equigranular groundmass composed of feldpsar microlites and intergranular, opaque iron-oxide
= 11 Ql tion volcanism in the area transitioned to large-scale, peralkaline, silicic volcanism during the R ; . Tebl ; . ) . : H . - -
: i ) =, / . . . . . Ferns, 2007b). The tuff is pink-red to gray, forms ledges up to 15 m thick, and is moderately massive, monolithic, clast-supported rhyolite breccia that forms east-west elongate masses minerals. The Johnson Creek intrusive body is a blue-gray mass that forms a crudely elliptical
- - = ——— a8 Rl Oligocene with the ~29 Ma eruption of the nearby Crooked River caldera (John Day Formation) . ' . o . T . : B . : ) L ) : :
\g 7 ! ) I 4 . . indurated, non-welded to locally rheomorphic. Non-welded zones consist of fresh, pumice, lithic, intrusive into unit Tcal in sec. 24, T. 13 S., R. 17 E. Clasts are angular and consist of vesicular, stock measuring about 1,500 m by 1,000 m. The intrusion is plagioclase-phyric and contains
) x i Pl (McClaughry and Ferns, 2006a,b,c; 2007a,c). Small exposures of Miocene (?), basalt and trachy- . - ) . - ) . . . . : : : ; : :
[ e -7 o : : . . . and glass shard-rich outcrops exposed as gray weathering knobs that break into large slabs. aphyric to sanidine-phyric rhyolite that have centimeter scale alteration halos. The clasts have a white, medium-grained, holocrystalline xenoliths up to 8 m across. In thin section, the Johnson
f 3 Vi S andesite exposed in the northern part of the map area are likely correlative with the Deschutes . : - f ) . . - . : : : . ;
4 N 472 o _ ; J V[ Formation small-volume basalt field exposed along the Crooked River canvon on the south Outcrops contain flattened, feathered pumice fragments up to 0.06 m long that are aligned maximum long axis of 0.3 m across; clasts average 0.02-0.04 m across. In thin section, breccia Creek intrusion contains aligned, euhedral to subhedral, strongly zoned plagioclase (1 mm
4 \ — - 7 sar A = alr ) s (McClaughry and Ferns, 2007b,d) P 9 4 parallel to bedding. Lithics are angular, average ~ 0.01 m across, and consist of gray and pink clasts consist of angular to subround, devitrified, altered sanidine-phyric rhyolite fragments. across) and relict hornblende (0.5 mm across) phenocrysts in a seriate groundmass of similar
/ﬁL\;, == = g = = AN ghry ’ o . ' . . aphyric and coarse-grained rock fragments. In thin section, the tuff contains white to gray Clasts typically have irregular, serated margins and are supported in a red to pink, fine-grained, composition. Xenoliths in the Johnson Creek intrusion are diorite composed mostly of interlock-
= \ . > AN\ Early Eocene strata in the map area are dominated by a variably porphyritic to aphyric, g . . : . . . - - - : - :
(’\ ) - B . e ) P : . : sanidine (0.7-1 mm across) phenocrysts and sparse, pale green clinopyroxene (augite) altered matrix that is the equivalent of the clasts. Both the matrix and the margins of clasts show ing euhedral plagioclase and relict hornblende crystals with minor amounts of quartz crystals.
@) massive to platy-jointed high silica andesite and dacite flow and dome succession. These rocks . . ; f . ) o - 3 A ; - - ) .
) - oD ; microphenocrysts embedded in a non-welded glass shard- and ash-rich matrix. Glass shards dissolution textures. The unit displays pervasive sulfide alteration and minor quartz veining. The Hornblende is largely replaced by opaque minerals, while the quartz crystals have been recrys-
N\ \ | are part of a larger, more deeply eroded igneous complex that extends from the crest of the o ) ) A - ) ; / : i ) )
= ; ) ; L are deformed around phenocrysts but are not severely flattened or fused to one another. breccia includes 0.5 m wide, finger-like dikes oriented N15°W, 80°NE, that intrude unit Tcal in the tallized to a mortar texture. The matrix is replaced by a mixture of feldspar, quartz, and very fine-
=N \ _~§_ 4, i Ochoco Mountains south to the Maury Mountains. Contacts between individual flows and flows - L . - . ; ; . ) - ) ined sericit d calcite. On the basis of hemical | th it includes high sili
— X e and domes in the complex are typically diffuse; the gradational nature of the porphyritic to aphyric Rheomorphic zones are exposed in friable weathering outcrops characterized by pink-red to north half of sec. 24, T. 13 S., R. 17 E. These dikes are not brecciated; both the intrusive rhyolite grained sericite and calcite. On the basis of geochemical analyses, the unit includes high silica
5= / ) i 1 L | . ! . gray lithic-rich, crystal-poor tuff with feathered yellowish-white and gray pumice up to 0.01 m and host unit Tcal are altered along the contact, weathering to a white and orange powder. andesite and dacite with 61.19 to 63.25 weight percent SiO,; 15.82 to 16.85 weight percent Al,O,,
A 0 ] - rocks over tens of meters limits the mappable demarcation of rock types in the field. Closely o . . . . p A - ; .
= = ) & = \ | [ : il e ! o i . . across. Lithic-rich tuff grades downward into lithophysal zones that contain contorted vertical . . o . . 0.83 to 0.94 weight percent TiO,; and 1.19 to 1.53 weight percent K,O (Samples 5, 9, 10 and 19;
_ / L spaced vertical bands or “dikes” of coarse-grained, porphyritic andesite and dacite, with abundant o A h T ; " Andesite and dacite breccia pipes and dikes (middle Eocene) — Purple to green, i . g ;
%) ) { \ N— == ! . . . flow-foliations. Lithophysal cavities are as large as 0.3 m in diameter; some cavities are quartz- . . ; . Table 1; Figure 1; McClaughry and Ferns, 2006b). Equivalent to unit Tca of Waters and Vaughan
o, a S =" N \ crystalline xenoliths have been observed within more aphyric rocks. South of the map area, near ) L0 : moderately matrix-supported, monolithologic breccia that forms east-west elongate masses that - :
| g ; \J g - - ) - - : filled. A glassy, perlitic vitrophyre is locally exposed beneath lythophysal zones. Based on ] . - R - (1968) and unit Tcmi of Swanson (1969).
1/t h \\_\ ) Prineville Reservoir, small marginal breccias and possible block and ash deposits are associated eochemical analyses in McClaughry and Ferns (2007d), the unit is a rhyolite tuff, with 76.17- are exposed along the margin of Tcrk rhyolites and intrusive into unit Tcal (sec. 23, 26, T. 13 S,,
f-; A IEEE // I\ | =5 77 [ ) LT ¥ o \\. with the complex (McClaughry and Ferns, 2007c). Radiometric age-dates, obtained on early 38 11 weight erc}::znt SO 11 162-]1?,51 weiaht percent AI 0. 1.81-2 22ywei ht 'ercent F;eO*' R. 17 E.). The unit forms resistant spire-like outcrops that weather to a dark gray with sporadic Andesite and dacite lava flows (Eocene) — Gray to black, purple-weathering, fine-
//jd{ = =\ - gﬁﬁq e 3 = : Eocene rocks by previous workers within the Lower Crooked River basin, indicate that the ana 4 28-2 68pwei ht ertz:’ent 'K o T.he tuffgconrt)ains relat?v eSI’ Hi h Iévels o?baﬁum (539_726 red-oxidized zones. Locally, anastomosing breccia zones enclose coherent andesite and dacite; Teal grained, porphyritic, aphyric, plagioclase-phyric, and plagioclase-hornblende phyric andesite and
fﬂ £ B IR 7 N T = ';' A * = \\ complex may range in age from 55 Ma to 50 Ma (Fiebelkorn and others, 1983). New high- m éa) iirconiu?n (209-384 2 m Z1), and niobium (30 7_35:3(? m Nb). On the basis of the breccia is composed of angular andesite and dacite clasts up to 0.05 m in diameter that are dacite flows and domes that form thick homogeneous masses throughout the map area. The unit
Uf ﬁ: i ; Q ‘I'. 7 - = — _seia) % precision “Ar/*°Ar radiometric age determinations obtained from the complex (Tcau; Tcdp) near ggochem'istry petrology, and st?ariigrapr{ic position, the tuff is C(.)ns[i)dpere d to.represent outflow encased in a dark purple gray silicified matrix. In thin section, breccia clasts consist of angular is commonly platy-jointed to locally columnar-jointed and weathers to form steep, rounded hills
oA = i // F.,-: i Harvey _Gap cons_train the local age of the complex between ~41 and 44 Ma (McClaughry and facies of the érooked Ri\’/ercaldera (McClaughry an,d Ferns, 2006a.c: 2007a). An Oligocene age to subgngular fragr_nents of unaltered, fine_—grained, e_quigranular, moderately trachytic, aphyric, armored by angular rock chips. In some locations, the unit consists of complexly intertonguing
& f ! § 4391 others, in prep; this report; Table 2). is inferred on the basis of stratigraphic position and correlat’ion witr; i;'mtracal déra—fill ff (Tjt) andesite and dacite composed of plagioclase, clinopyroxene, and orthopyroxene. Clasts flow-on-flow sequences of thick platy lava flows. The margins of individual flows are defined by
\Cp_“\;“l"w — f ’ ) i g A succession of Eocene, peraluminous, low niobium (Nb) dacite to rhyolite flows and ' margins are typically smooth to moderately serated; the boundaries between clasts and matrix purple to brown, basal and marginal autobreccia deposits. Topographic breaks between
/A : ; ) A\ ’ intrusions and dacite to rhyolite tuff, exposed in the east part of the map area, are inset into the Welded tuff (Late Eocene to early Oligocene?) - Purple to light brown, indurated, is sharp. Jigsaw and crackle breccia textures are locally pervasive. The matrix is distinctly individual lava flows are commonly marked by brick red, reddish-orange and maroon clay soils.
M?ﬁ t \ 1 sl deeply eroded, early Eocene surface (Table 1). These units collectively constitute part of a 10 x 8 densely welded, pumice-lithic-crystal tuff that unconformably overlies Clarno Formation rocks at green-colored and is composed of a nearly bimodal distribution of poorly sorted rock fragments Lithologic and chemical similarity across breaks precludes the mapping of individual flows. In thin
aey i .,// { { ' Q km caldera, herein referred to as the Wildcat Mountain caldera. Waters and Vaughan (1968) the head of Deer Creek and at Green Mountain. The tuff is typically poorly exposed (weathers to (~ 0.1-0.2 mm across on average) and very fine material (devitrified ash and/or glass). The section, the unit consists of very fine-grained to fine-grained, closed-textured, aphyric, plagio-
a0 k AV | considered the succession to be part of the John Day Formation. Subsequent examination by dark gray, angular fragments), except on top of Green Mountain, where the tuff forms prominent matrix is composed of grains that are equivalent to the gravel-sized clasts and highly angular clase-, pyroxene-, and microcline-phyric, and glomeroporphyritic andesite and dacite. Thin
\ = \ (: Swanson (1969) interpreted these strata to be late Clarno or early John Day in age. The Wildcat spires. The tuff contains sparse phenocrysts of sanidine, oligoclase, quartz, biotite, and amphi- crystal fragments of white, alkali-feldspar, plagioclase, and pyroxene. The matrix is approxi- sections also contain embayed, anhedral quartz rimmed by clinopyroxene grains and broken,
\\\ \ = N Mountain caldera succession is considered by this report, to be Eocene in age, based upon new bole as well as lithics composed of dark brown, fine-grained crystalline rock fragments. mately 40 percent lithic grains, 10 percent free alkali-feldspar crystals, and 50 percent fine to twinned plagioclase crystals that may be xenocrysts. Phenocrysts are enclosed in a fine-grained,
A Tt :;i* “Ar/*°Ar radiometric age determinations that constrain the age of these rocks between 39 and 44 Flattened and stretched pumice fiamme and glass shards define a well-developed eutaxitic very fine, altered green ash. Crystals in the matrix are variably altered to sericite and chlorite(?); hypohyalline to equigranular hypocrystalline, variably trachytic groundmass of plagioclase and
= ‘:} ! ( A NN Ma (McClaughry and Ferns, 2006b; McClaughry and others, in prep; this report). The peralumi- fabric. Pumice, crystals, and lithics rest in a maroon to purple, fine-grained matrix composed of alteration is overall more prevalent in the matrix that the clasts. pyroxene, as well as intergranular pyroxene, glass, and pyramidal to rectangular iron-oxide
y O S N nous, low-niobium (Nb) geochemical character of these rocks suggests a correlation with strata ash and devitrified glass shards. Where exposed, the tuff contains abundant lythophasae (up to ) . ) minerals. The unit ranges from andesite to dacite, with 59.17 to 63.48 weight percent SiO,; 15.94
Nie b X s of the Clarno Formation, and not the high-niobium silicic rocks of the John Day Formation. The 0.02 m across) that create a honeycomb texture. Most lythophasae are filled by secondary Dacite and rhyolite of Brennan Palisades (Eocene) — Purple to tan-gray, columnar- to 17.16 weight percent Al,O,; 0.82 to 1.20 weight percent TiO,; and 0.99 to 1.92 weight percent
¥ correlation is preliminary as regional stratigraphic and geochemical relations between the John quartz and zeolite. The base of the tuff is marked by a black-colored, sparsely feldspar-phyric jointed, layered, feldspar-phyric compound dacite to rhyolite intrusion that is nonconformable K,O (Samples 4, 6, 21, 24, 25 and 26; Table 1; Figure 1). Equivalent to the Clarno Formation of
\ 7 Day and Clarno formations have not been adequately established. o lythophasae-bearing vitrophyre and vitrophyre breccia. The tuff may be as much as 100 m thick. into unit Teal at Brennan Palisades and along Schoolhouse Creek. The unit contains abundant Merriam (1901). On the basis of intraflow contacts and intervening weathering zones, the unit is
\ * W Although previous workers have alluded to “pervasive” alteration in the Clarno Forma- Chemically, the tuff is a rhyolite, with 73.46 to 76.31 weight percent SiO,, 12.40 to 12.67 weight xenoliths and/or xenocrysts. Layering in the Brennan Palisades intrusion is defined by alternat- interpreted to be composed of several different aged successions of lithologically similar appear-
%55 \ | . 2 tion (Walker and Robinson, 1990), Eocene strata in the map area are, for the most part, well percent AlL,O,, and 3.74 to 4.02 weight percent K,0 (Samples 11 and 35; Table 1; Figure 1). ing vesicle-rich and massive, vesicle-poor bands. The bands are typically 0.02-0.05 m thick, ing lava flows. Includes a mass of iron-stained, aphyric andesite exposed along the east edge of
o A : preserved. Hydrothermal alteration zones are restricted to small areas along the margin of the Marked by high levels of barium (1,144 to 1,313 ppm Ba) and moderate levels of niobium (64 to distinctly segregated, and laterally continuous over tens of meters. Locally bands show well- the map area, between Dry Creek and Mill Creek, that is interpreted as hydrothermally altered
N ) \ O Wildcat Mountain caldera. Alteration zones, exposed along the southwest margin of the caldera, 70 ppm Nb). The presence of amphibole and biotite phenocrysts in unit Tjtw indicate that this tuff developed kink folds and are separated by coarse breccia layers and lensoid, boudin-like basement rocks to the Wildcat Mountain caldera.
' are the host of the mercury deposits that were prospected between Kidnap Springs and is not correlative with tuff deposits associated with the Oligocene Crooked River caldera. features up 0.3 m thick and 0.6 m long. At Brennan Palisades, the layering dips to the west, with
| , ) < ! Strickland Butte area of (Brooks, 1963). These alteration zones are typically marked by red- to Stratigraphic position and elevated levels of niobium preclude correlation of the tuff as outflow the dip angle increasing to the east-southeast; on the east, the unit becomes more massive. The Porphyritic andesite and dacite (Eocene) — Domal masses of black to gray, massive,
i - 3 b purple-colored clays that resemble paleosols. from the Eocene Wildcat Mountain caldera, exposed in the eastern part of the map area. unit weathers to bulbous hoodoo forms with a brown-colored, grus-like mantle. Chemically, the bulbous to spine-like, flow-banded andesite to dacite porphyry. Includes spine-like, vertically flow
= T e T = - -3 1 p p p e . . . . N .
- : o e This map depicts a preliminary stratigraphic assessment for the Hensley Butte and Salt ) unit is a dacite to rhyolite with 67.65-72.61 weight percent SiO,; 14.25-15.42 weight percent banded masses and bulbous, horoziontally-flow banded masses. Forms two exposure belts,
o Z § BUtte 7.5' quadrangles and provides a framework for further geologic and geohydrologic analysis Clarno Formation Al,O;; 0.41-0.73 weight percent TiO,; and 2.59-3.69 weight percent K,O (Sample 3 and 44; Table one in the eastern part of the map area near Lemon Creek and a second in the northern part of
> < i - of the LCRB. The map is released as an interim open-file report and has not yet been peer Tc (Eocene to early Oligocene) — Andesite to dacite domes, flows, and shallow intrusions, dacite 1; Figure 1). The dacite is marked by elevated levels of barium (667-772 ppm Ba) and low levels the map area. In thin section, the dacite contains blocky, equant phenocrysts of hornblende (0.5
- & 0=3 - reviewed. 'I;htle Unitzﬂ Sltatc_asdG(t)vernment"is ?uéhotritzhed1t02£ec§)(|)'8ducei and dti’_stfibute reprints _for to rhyolite tuff, domes, flows, and shallow intrusions of the Wildcat Mountain Caldera complex, of niobium (11.8-15.8 ppm Nb). mlm), strongl):jzoned gllagioclase (t1.5 ;nrr‘n) %Td zyperlsth_enle (0.5 mcrjn) sst inhe_lt_fresh appearing
WO 2 governmental use. Geologic data were collected at the 1:24, scale combining new mapping and basaltic andesite and andesite flows. Equivalent to the Clarno Formation of Merriam (1901 . . . . glassy groundmass. Glomerocrysts of hornblende, plagioclase, and sub-ophitic pyroxene are
L " \-\ S with published and unpublished data from air photos, orthophotoquads, and digital shaded relief and Walker and Robinson (1990), and subd?vided into: ( ) Plag|oclase-hornblende-ph)_/rlc and§5|te and dacite (Eocene) - Dark_gray to yeII_ow also present. On the basis of geochemical analyses from this map area and analyses from the
- ' Yl ! images derived from USGS 10 m DEM (Digital Elevation Model) grids. Geochemical samples ' graéy,dme_dlum tohverycti:oarse-%ramed, plagloclfase- %Td _hornble_nc_lre-pl)hylnc anLdeftsne ang céacne, adjoining Ochoco Reservoir 7.5' quadrangle (McClaughry and Ferns, 2006b), the porphyry
] N Qs | B were prepared and analyzed by x-ray fluorescence (XRF) at Franklin and Marshall College, Wildcat Mountain caldera complex an kac_lte t?orp y;]y omes t ?t r?re nonconformable into unit Tca ﬁ\ong 0 onlan " ogue consists largely of peraluminous andesite to high-silica dacite, with a range of range of chemical
Lancaster, PA. Results of chemical analyses shown in Table 1 have been normalized on a , ) , , , , fCreg s In the nort gesli pzrt olt e mﬁp agea. OUtCLOES are glt_al?era }’ mlasswe”( °C: y spire abundances from 58.21 to 67.76 weight percent SiO,; 13.54 to 17.83 weight percent Al,O,; 0.48
~ volatile-free basis and recalculated with total iron expressed as FeO*. Table 1 includes —_— Basaltic andesite (Iate Eocene to O!lgoceng) — Gray to black, fine- to medium-grained, f_ornluntc‘:)] a:deOlégarl oc ) eeply Weat.erz , cc?\f/_ere y gcriuls-l e sI0| s.h_ nternally, the unit is 0 0.90 weight percent TiO,; and 1.32 to 2.68 weight percent K,O (Sample 17, Table 1; Figure 1).
S geochemical analyses from Bingert (1984). Descriptive rock unit names are based upon analyses closed-textured, plagioclase-phyric basaltic andesite lava flows, exposed in an east to west ine dY anded by a‘e“.‘a“gg co_arse-gralned and Ilne-'ngme :yerts)i ”d'[ in SZCtllokni_tf Tdumt is A ~2 x 3 m granite xenolith is exposed in the porphyry southeast of Bottleneck Spring in the
— plotted on the total alkalis versus silica diagram (TAS) of Le Bas and others (1986) and Le Maitre trending swath across the north part of the map area. The unit is disconformable across and mhe !um,\-AFo coarse-grained, selrlgte textl:jre 4 andp a%loc ase-, norn q ?n €-, anc akali-le I_srr:ar- " NWYa, NE ¥4, sec. 2, T. 13 S., R. 16 E. The xenolith has a typical granite geochemical composi-
\ { s and others (1989) (Figure 1). The radiometric age-date sample was prepared and analyzed by inset into older Eocene deposits. Outcrops are massive to locally platy-jointed and form muted pl yr_lc.I inor %oastltztlentz include r:oun e1 qu_art; p enoc;yhsts and large cogrllate (;«_ano iths o tion with 73.67 weight percent SiO,; 0.35 weight percent AlL,O;; 0.35 weight percent TiO,; and
_ = 5 the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon. knops that weather. to blocky to. subrqund boulders |qterm|xed with red-oxidized soils. In thin pfagloc_ ase aln c|>rn_ e? e morg th an SIO dm in C;ame_tegI denqc_rfysés alre enc oseh |ns m_atm; 3.89 weight percent K,0 (Sample 31, Table 1; Figure 1). In thin section the granite is medium-
D > Subsurface geology shown in cross section incorporates stratigraphic analysis of available section, the basaltic andesite is seriate-textured, with euhedral to subhedral, etched and of equigranular plagioclase and hornblende and variably devitified glass. On the basis o grained, equigranular, and holocrystalline containing anhedral crystals of plagioclase (70 modal
- Oregon Water Resources Department water-well drill records. embayed, variably perthitic plagioclase phenocrysts up to 3.5 mm in length. Plagioclase are geochemical analyses (Bingert, 1984), the unit ranges from an andesite to high silica dacite, with percent) and quartz (25 modal percent). Sparse, light brown, biotite tablets (5 modal percent)
_ % 5 fhg commonly poikilophitic, enclosing blocky clinopyroxene. Corroded feldpsar phenocryst up to 1.2 62.07 0 70.61 weight percent SiO,; 13.54 to 16.57 weight percent Al,O,; and 0.04 to 3.52 weight with zircon inclusions occur as intergranular components. A distinct consertal texture is
e Tcau N EXPLANATION mm “;fl]ength afte locally ”Immzd' bny.l mm th'gk aggregratles of clmgpyroxene and ((’j"thPIyrQX‘ percent K,O (Samples 27, 28, 32, 33, 39, 40 and 41; Table 1; Figure 1). developed in the thin section, where quartz crystals are intergrown along the margins of plagio-
T.138. i : ; ; éne. Fhenocrysts are enclosed in afiné-graned, equigranular groundmass composed of plagio- clase crystals. On the basis of outcrop distribution, unit Tcdp is interpreted as eroded dome
= X — ] Q Upper Cenozoic surficial and valley-fill deposits clase microlites, intergranular clinopyroxene, and opaque iron-oxide minerals. On the basis of complex)(les or shallow. subvolcanic intrlf)sive masses. P P
T. 148 \ N 1 Alluvium (Holocene and late Pleistocene) — Gravel, sand, and silt deposited in active geqchemlcal analysis, the uplt is a basaltic fandesne, with 54.34 weight percent Sle; 17.24
| Qal stream channels and on adjoining flood plains. Includes gravel, sand, and silt deposited in weight percent AL,O,; 1.28 TiO,; and 0.78 weight percent K,0 (Sample 37; Table 1; Figure 1).
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=) (| Tcau.
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* Major element analyses from Bingert, 1984




