

Teof

2x Vertical Exaggeration

Field and	UTM	Elev.		Мар	ap Oxides (wt. percent) Trace Elements (parts per million)																															
boratory no.	Coordinates	(ft)	Lithology	Unit	SiO ₂	Al_2O_3	TiO ₂	FeO*	MnO	CaO	MgO	K ₂ O	Na ₂ O	P_2O_5	Ni	Cr	Sc	V	Ва	Rb	Sr	Zr	Y	Nb	Ga	Cu	Zn	Pb	La	Ce	Th	U	Co	LOI	Fe ₂ O ₃	F
77114*	4925350N	550	basaltic andesite	Teob	55.56	16.59	0.96	7.98	0.14	8.48	6.38	0.95	2.82	0.14	nd	356	24	nd	206	30	229	nd	nd	nd	nd	nd	nd	nd	11	24	nd	nd	35	nd	nd	n
	510600E																																			
29-WF-08	4924870N	1120	basaltic andesite	Teob	55.74	16.66	0.87	7.86	0.15	8.55	6.26	0.99	2.77	0.14	105	247	22	177	212	33.2	293	92	17.9	7.0	14.8	80	71	1	14	22	8.0	<0.5	29	2.25	2.80	5.
	510740E																																			
83-WF-08	4926740N	405	pyroxene basalt	Teob	51.67	17.09	0.85	8.58	0.15	11.21	7.50	0.65	2.16	0.14	34	180	32	255	136	11.2	458	69	13.7	5.2	16.5	72	77	3	13	19	1.8	< 0.5	31	2.60	3.64	5.
00 14/5 00	514450E	450	1 10 1 1	- ·	50.45	17 70	1.10	0.05	0.04	0.04	5 50			0.40			0.5	004		4.0	0.47		~~~		10.1	~~~	~~			10	1.0	0.5	05	1.00	4.00	-
86-WF-08	4922920N 518590E	450	basaltic andesite	Teob	53.15	17.76	1.16	9.65	0.21	9.61	5.58	0.36	2.36	0.16	33	80	35	201	117	4.3	347	92	23.0	7.7	18.4	99	98	1	11	19	1.3	<0.5	35	1.36	4.83	5.
94-WF-08	4923260N	560	basaltic andesite	Teob	52.57	15.98	0.96	9.32	0.17	11.01	7.22	0.56	2.11	0.11	37	176	34	281	97	7.5	392	63	15.8	4.6	15.2	102	81	4	9	14	<0.5	<0.5	35	2.48	3.16	6.
94-00	519570E	500	basallic andesile	Teob	52.57	15.50	0.90	9.52	0.17	11.01	1.22	0.50	2.11	0.11	57	170	54	201	51	1.5	392	05	15.0	4.0	13.2	102	01	4	9	14	×0.5	~0.5	55	2.40	5.10	0.
58-WF-08	4919950N	1620	pyroxene basalt	Teob	49.99	17.30	1.23	10.16	0.18	10.11	8.09	0.31	2.44	0.20	160	372	31	243	215	2	306	97	32.9	8.3	14.3	95	92	1	12	24	2	<0.5	44	3.09	3.86	6.
	510480E	.020	pyroxono baban	1000	10.00			10.10	0.10		0.00	0.01		0.20		0.2	0.	2.0	2.0	-	000	0.	02.0	0.0		00	02				-	0.0		0.00	0.00	0.
90-WF-08	4921320N	1140	gabbro	Tomg	51.54	17.59	1.59	10.07	0.18	10.10	5.28	0.69	2.63	0.32	15	55	28	275	155	14.5	385	105	26.2	9.3	17.6	126	82	2	13	25	<0.5	<0.5	26	4.06	4.98	5.
	514310E		-	-																																
82-WF-08	4920440N	640	gabbro	Tomg	50.02	17.82	1.59	10.51	0.18	10.43	6.07	0.47	2.64	0.27	22	73	27	288	113	8.5	380	89	23.6	7.9	17.6	109	76	<1	10	20	<0.5	<0.5	30	3.73	4.61	5.9
	514800E																																			
68-WF-08	4917770N	1740	basaltic andesite	Teoi	52.96	15.58	0.87	8.66	0.17	11.09	8.07	0.55	1.91	0.14	54	273	33	249	128	13.6	481	73	15.5	5.3	14.5	96	81	3	13	23	1.9	0.9	33	3.09	3.50	5.
	510550E																																			
70-WF-08	4916920N	1140	diabase	Teoi	49.88	19.55	1.27	9.75	0.17	11.78	4.55	0.42	2.43	0.19	31	85	34	319	188	5.4	460	85	20.0	6.2	18.2	185	79	1	13	21	2.2	<0.5	32	2.05	4.17	5.
	512890E																																			
71-WF-08	4916800N	1120	pyroxene basalt	Teoi	50.57	16.40	1.03	9.50	0.18	11.18	8.28	0.47	2.20	0.20	73	249	32	267	147	7.3	435	67	17.1	5.2	15.3	60	82	1	13	21	0.8	0.7	38	2.33	3.43	6.1
	512850E												. ==																							-
46-WF-08	4915920N	1700	pyroxene basalt	Teoi	53.11	15.05	0.84	8.86	0.15	10.96	8.49	0.61	1.78	0.14	63	332	37	257	145	11.6	432	78	14.1	5.0	14.1	100	87	4	11	19	1.2	<0.5	36	2.62	3.02	5.9
49-WF-08	511780E 4915930N	1380	nurevene beeelt	Tasi	53.17	45 47	0.07	8.68	0.17	11.37	7.76	0.69	1.97	0.15	61	340	34	260	140	16.8	457	70	14.2	4.7	13.8	90	82	3	13	20	3.9	<0.5	35	1.30	3.07	5.
49-WF-06	4915930N 513900E	1360	pyroxene basalt	Teoi	53.17	15.17	0.87	0.00	0.17	11.37	7.76	0.68	1.97	0.15	01	340	34	200	140	10.0	497	70	14.2	4.7	13.0	90	02	3	15	20	3.9	<0.5	30	1.30	3.07	5.
50-WF-08	4913590N	880	ash-flow tuff	Toth	69.86	14.80	0.62	4.51	0.08	3.40	1.21	1.74	3.65	0.12	1	16	13	95	496	42 5	185	223	31.4	10.1	12 5	74	52	4	21	42	53	13	4	2.84	2.69	1.
30-111-00	515570E	000	don-now tun	Tour	05.00	14.00	0.02	4.51	0.00	0.40	1.21	1.74	0.00	0.12		10	15	55	400	42.5	105	220	51.4	10.1	12.5	14	52	7	21	72	0.0	1.5	7	2.04	2.00	
51-WF-08	4915730N	1400	basalt	Tomb	51.14	14.55	2.66	13.49	0.27	8.75	4.18	0.67	3.35	0.94	3	15	37	243	305	9.2	363	136	38.4	9.8	19.9	36	123	2	15	37	2.7	<0.5	32	2.48	4.92	8.
	515190E																																			
78BR36*	4915640N	1180	basalt	Tomb	51.20	14.90	2.66	13.04	0.30	8.60	4.11	0.54	3.59	1.06	nd	13	41	nd	262	nd	nd	nd	nd	nd	nd	nd	nd	nd	17	44	nd	nd	nd	nd	nd	n
	516740E																																			
93-WF-08	4917160N	760	basalt	Tomb	51.09	14.82	2.68	13.29	0.27	8.91	4.08	0.61	3.26	0.98	2	19	38	257	221	19.7	355	143	40.1	10.1	19.4	38	137	1	12	36	1.1	<0.5	32	2.51	3.15	10
	518290E																																			
78BR34*	4915650N	720	basalt	Tomb	51.19	14.95	2.66	12.96	0.37	8.62	4.15	0.48	3.58	1.04	nd	20	39	nd	299	nd	nd	nd	nd	nd	nd	nd	nd	nd	17	41	nd	nd	nd	nd	nd	n
	519580E																																			
78SH41*	4916120N	700	basalt	Tomb	50.76	14.95	2.53	13.06	0.26	8.83	4.71	0.45	3.57	0.88	nd	nd	nd	nd	302	15	352	nd	nd	nd	nd	nd	nd	nd	17	43	nd	nd	nd	nd	nd	n
	519910E																																			
45-WF-08	4915930N	2120	basalt	Tomb	51.19	14.54	2.64	13.41	0.26	8.75	4.20	0.65	3.40	0.96	2	15	33	250	234	13.8	352	144	39.7	10.6	20.4	39	133	3	16	34	0.7	1.1	33	1.69	3.13	10
70011401	510940E	4400	1 10 1 10	. .	50.40	10.00	4.00	0.75	0.04	0.47	4.00			0.50					10.1	40	0.1.0	and a	and a						47				=0		and a	
78SH40*	4920430N	1120	basaltic andesite	Tmpb	53.42	16.22	1.80	9.75	0.21	8.47	4.68	1.01	3.92	0.52	na	70	32	na	401	13	612	nd	nd	nd	nd	nd	nd	nd	17	39	nd	nd	70	nd	nd	n
	519780E																																			

OPEN-FILE REPORT O-09-10

Preliminary Geologic Map of the Waterloo 7.5' Quadrangle, Linn County, Oregon

By Mark L. Ferns and Jason D. McClaughry

This geologic map was funded in part by the USGS National Cooperative Geologic Mapping Program through STATEMAP Award #08HQAG0087. Additional funding came from the State of Oregon. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. government.

REFERENCES

- quadrangle, Oregon: Oregon Department of atory wells, southern Willamette basin, Oregon: Allison, I. S., and Felts, W. M., 1956, Reconnais-Mineral Industries Miscellaneous Geologic Map, Range: Oregon Geology, v. 62, p. 99–122. scale 1:62,500.
- Special Report 265, 311 p. Beaulieu, J. D., 1971, Geologic formations of Murray, R. B., and Madin, I. P., 2006, Preliminary
- Oregon Department of Geology and Mineral Industries Bulletin 70, 72 p. Beaulieu, J. D., Hughes, P. W., and Mathoit, R. K., 1974, Environmental geology of western Linn County, Oregon: Oregon Department of Geology Niem, W. A., MacLeod, N. S., and Priest, G. R., and Mineral Industries Bulletin 84, 117 p. Bovd, F. R., and Mertzman, S. A., 1987, Composi-
- tion of structure of the Kaapvaal lithosphere, southern Africa, in Mysen, B. O., ed., Magmatic Processes—Physicochemical Principles: The NRCS (Natural Resources Conservation Geochemical Society, Special Publication 1, p. Service), 2006, Soil Survey Geographic 13–24 Conlon, T. D., Wozniak, K. C., Woodcock, D.,
- cal Survey Scientific Investigations Report units in the Willamette Valley, Oregon: U.S. 2005-5168, 83 p. Conrey, R. M., Taylor, E. M., Donnelly-Nolan, J.
- Moore, G. W., ed., Field guide to geologic Range in Oregon: U.S. Geological Survey Profesprocesses in Cascadia: Oregon Department of sional Paper 449, 56 p. 36, p. 47–90.
- R.C., Conrey, R.M., and Lexa, J., 2006, Priest, G. P., and Vogt, B. F., 1983, Geology and Geochemical database for volcanic rocks of the western Cascades, Washington, Oregon, and 155 [http://pubs.usgs.gov/ds/2006/ 155]. Ferns, M. L., and McClaughry, J. D., 2008,
- Preliminary geologic map of the Lebanon and Onehorse Slough 7.5' quadrangles, Linn County, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report O-08-11, $1.24\ 000$ Ferns, M. L., and McClaughry, J. D., 2008, Prelimi-
- nary geologic map of the Lebanon and Onehorse Slough 7.5' quadrangles, Linn County, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report O-08-11, scale 1:24.000.
- rtment of Geology and Mineral Industries Open-File Report O-09-04, scale 1:24,000. time scale 2004, Cambridge University Press,
- Graven, E.P., 1991, Structure and Tectonics of the Thayer, T. P., 1939, Geology of the Salem Hills Oregon State University, M.S. thesis, 119 p. Gregory, I, 1968, The fossil woods near Holley in Industries Bulletin 15, 40 p. Oregon: Ore Bin, v. 30, p. 57–56.
- nary Geologic Map of the Springfield 7.5' State University, M.S. thesis, 115 p. Langridge, R. W., 1987, Soil survey of Linn Geological Survey Oil and Gas Investigation County area, Oregon: Soil Conservation Map OM 110, scale 1:63,360.
- Service, 343 p., 93 pl. of volcanic rocks based on the total alkali-silica Investigations Map I-1893, scale 1:250,000.
- J., Lemeyre, J., Le Bas, M. J., Sabine, P. A., Special Paper 9, 26 p. Schmid, R., Sorenson, H., Streckeisen, A., cation of igneous rocks and glossary of terms: Benton counties, Oregon: Oregon Department Oxford, Blackwell, 193 p. Lux, D. R., 1982, K-Ar and ⁴⁰Ar-³⁹Ar ages of mid- Report O-06-26, scale 1:24,000.
- Madin, I. P., and Murray, R. B., 2006, Preliminary counties, Oregon: Oregon Department of West 7.5' quadrangles, Lane County, Oregon: Report O-08-14, scale 1:24,000.
- $1.24\ 000$ 2006, Preliminary Geologic Map of the Coburg Open-File Report O-06-06, scale 1:24,000. County, Oregon: Oregon Department of Geology Murray, R. B., and Madin, I. P., 2006, Preliminary and Mineral Industries, unpublished data, scale geologic map of the Veneta 7.5' quadrangle, 1:24,000.
- Report O-06-13, scale 1:24,000. McClaughry, J. D., 2009, Preliminary geologic Walsh, T. J., Kockleman, W. J., and Priest, G. R.,

11, scale 1:24,000.

is appreciated.

- Allison, I. S., 1953, Geology of the Albany McKeel, D. R., 1985, Biostratigraphy of explor-
- Geology and Mineral Industries Bulletin 37, 18 p. Oregon Department of Geology and Mineral Industries Oil and Gas Investigation 13, 17 p. sance geologic map of the Lebanon quadrangle, Mertzman, S. A., 2000, K-Ar results from the Oregon: Oregon Department of Geology and southern Oregon – northern California Cascade
- Murray, R. B., 2006, Preliminary geologic map of Balster, C. A., and Parson, R.B., 1968, Geomor- the Creswell 7.5' quadrangle, Lane County, phology and soils, Willamette Valley, Oregon: Oregon: Oregon Department of Geology and Oregon Agricultural Experimental Station Mineral Industries Open-File Report O-06-12, scale 1:24.000.
- western Oregon, west of longitude 121° 30': geologic map of the Veneta 7.5' quadrangle, Lane County, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report O-06-13, scale 1:24,000, Report O-06-13, scale 1:24,000.
 - 1987, Geology, in Ch2M-Hill, Superconducting Super Collider Site proposal University site Oregon, v. 3, Geology and Tunneling: Corvallis, Oreg., Ch2M-Hill, p. 3-2–3-20.
- (SSURGO) database for Linn County, Oregon: U.S. Department of Agriculture. Herrera, N. B., Fisher, B. J., Morgan, D. S., Lee, O'Connor, J. E., Sarna-Wojcicki, A., Wozniak, K. K. K., and Hinkle, S. R., 2005, Ground-water C., Polette, D. J., and Fleck, R. J., 2001, Origin, hydrology of the Willamette Basin: U.S. Geologi- extent, and thickness of Quaternary geologic
- Geological Survey Professional Paper 1620, 52 M., and Sherrod, D. R., 2002, North-central Peck, D. L., Griggs, A. B., Schlicker, H. G., Well, F. Oregon Cascades: Exploring petrologic and G., and Dole, H. M., 1964, Geology of the central tectonic intimacy in a propagating intra-arc rift, in and northern parts of the Western Cascade
- Geology and Mineral Industries Special Paper Piper, A. M., 1942, Ground-water resources of the Willamette Valley: U.S. Geological Survey Water du Bray, E.A., John, D.A., Sherrod, D.R., Evarts, Supply Paper WSP 890, 194 p.
- geothermal resources of the central Oregon Cascade Range: Oregon Department of California: U.S. Geological Survey Data Series Geology and Mineral Industries Special Paper Retallack, G. J., Orr, W. N., Prothero, D. R.,
 - Duncan, R. A., Kester, P. R., and Ambers, C. P., 2004, Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon: Geological Society of America Bulletin, v. 116, p. 817–839. Richardson, H. E., 1950, The geology of the Sweet Home petrified forest: Eugene, University
- of Oregon, M.S. thesis, 44 p. Schenck, H. G., 1927, Marine Oligocene of Oregon: California University Department Geological Society Bulletin, v. 16, p. 449–460. Ferns, M. L., and McClaughry, J. D., 2009, Smith, J. G., Sawlan, M. S., and Katcher, A. C., Preliminary geologic map of the Brownsville 7.5' 1980, An important lower Oligocene welded-tuff quadrangle, Linn County, Oregon: Oregon marker bed in the western Cascade Range of
- southern Oregon: Geological Society of America Abstracts, v. 12, p. 153. Gradstein, F. M., and others, 2004, A geologic Smith, R. I., 1958, The geology of the northwest part of the Snow Peak quadrangle, Oregon: Corvallis, Oregon State University, M.S. thesis.
- Southern Willamette Valley, Oregon: Corvallis, and the North Santiam River Basin, Oregon: Oregon Department of Geology and Mineral the Sweet Home Petrified forest, Linn County, Verplanck, E. P., 1985, Temporal variations in volume and geochemistry of volcanism in the
- Hladky, F. R., and McCaslin, G. R., 2006, Prelimi- Western Cascades, Oregon: Corvallis, Oregon Quadrangle, Lane County, Oregon: Oregon Vokes, H. E., Snavely, P. D., and Myers, D. A., Department of Geology and Mineral Industries 1951, Geology of the southern and southwest-Open-File Report O-06-07, scale 1:24,000. ern border area, Willamette Valley, Oregon: U.S.
- Walker, G. W., and Duncan, R. A., 1989, Geologic Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., map of the Salem 1° by 2° quadrangle, western and Zanettin, B., 1986, A chemical classification Oregon: U.S. Geological Survey Miscellaneous
- diagram: Journal of Petrology, v. 27, part 3, p. White, C. M. 1980, Geology of the Breitenbush Hot Springs guadrangle. Oregon: Oregon Le Maitre, R. W., Bateman, P., Dudek, A., Keller, Department of Geology and Mineral Industries Wiley, T. J., 2006, Preliminary geologic map of the Wooley, A. R., and Zanettin, B., 1989, A classifi- Albany 7.5' quadrangle, Linn, Marion, and
- of Geology and Mineral Industries Open-File Tertiary volcanic rocks from the West Cascades Wilev, T. J., 2008, Preliminary geologic map of the Range, Oregon: Isochron/West, no. 33, p. Corvallis, Wren, and Marys Peak 7.5' quadrangles, Benton, Lincoln, and Linn
- geologic map of the Eugene East and Eugene Geology and Mineral Industries Open-File Oregon Department of Geology and Mineral Wiley, T. J., 2009a, Preliminary geologic map of Industries Open-File Report O-06-17, scale the Lewisburg 7.5' quadrangle, Benton, Linn, and Polk counties, Oregon: Oregon Department
- Madin, I. P., Murray, R. B., and Hladky, F. R., of Geology and Mineral Industries Open-File Report O-09-05, scale 1:24,000. 7.5' Quadrangle, Lane County, Oregon: Oregon Wiley, T. J., 2009b, Preliminary geologic map of Department of Geology and Mineral Industries the Greenberrry 7.5' quadrangle, Benton
- Lane County, Oregon: Oregon Department of Yeats, R. S., Graven, E. P., Werner, K. S., Goldfin-Geology and Mineral Industries Open-File ger, C. and Popowski, T. A., 1996, Tectonics of the Willamette Valley, Oregon, in Rogers, A. M.,
- map of the Sweet Home 7.5' quadrangle, Linn eds., Assessing earthquake hazards and County, Oregon: Oregon Department of Geology reducing risk in the Pacific Northwest: U.S. and Mineral Industries Open-File Report O-09- Geological Survey Professional Paper 1560, v. 1, p. 183–222.

ACKNOWLEDGMENTS Access to private timberland owned by Cascade Timber Consulting, Inc., Sweet Home, Oregon,

> Figure 3. Total alkalis versus silica (TAS) classification of whole-rock x-ray fluorescence analyses from Table 1.

