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ABSTRACT 

We evaluated difficulty of pedestrian evacuation in the communities of Rockaway Beach (including 
Nedonna Beach), Twin Rocks, and Barview, Tillamook County, Oregon, in the event of a local tsunami 
generated by an earthquake on the Cascadia subduction zone (CSZ). We examined a maximum-considered 
CSZ tsunami event covering ~100% of potential variability, termed XXL1 and generated by a magnitude 
9.1 earthquake. We determined minimum walking times to safety (defined as ~20 ft beyond the 
inundation limit) for a moderate walking speed of 4 fps (feet per second, 22 min/mile) using least-cost 
distance (LCD) routes determined by slight modification of the anisotropic path distance method of Wood 
and Schmidtlein (2012) and Wood and others (2016). Four feet per second is the standard speed for 
pedestrians to cross at signalized intersections. Evacuation was limited to roads and pedestrian pathways 
designated by local government reviewers as the most likely routes.  

To estimate whether pedestrians can stay ahead of a tsunami along entire routes, we produced 
maps of: 

• Tsunami wave advance for an XXL1 event, 
• LCD walking time (at 4 fps), 
• Detailed evacuation routes for the XXL1 scenario, and 
• “Beat-the-Wave” (BTW) for the XXL1 scenario.  

 
The BTW maps depict the minimum evacuation speed required to stay ahead of the wave given a 

variety of scenarios that will increase evacuation difficulty. The primary scenario uses the existing road 
network and includes a 10-minute delay from start of earthquake before beginning evacuation. Additional 
challenges to evacuation are discussed and include the failure of non-retrofitted bridges and the 
possibility of road closures due to landslides. In all cases, the identified minimum speeds must be 
maintained for the entire time it takes to evacuate from the inundation zone. Given the model 
limitations defined in the Methods section (i.e. liquefaction, fenced yards, etc.), results show that 
evacuation of the entire region (here referred to as “the greater Rockaway Beach area”) is achievable at a 
moderate walking speed (4 fps) assuming the existing road and bridge network remains available. Even 
for those with mobility limitations (i.e., those traveling at speeds greater than 4 fps), safety can be reached 
ahead of the wave from all parts of town, again assuming the existing road and bridge network remains 
available. LCD and BTW scenarios showed that failure of one or both bridges in the area (Highway 101 by 
Lake Boulevard and NE 12th Avenue) introduces evacuation challenges for evacuees starting from areas 
west of Lake Lytle and Crescent Lake. Landslide-induced road closures also introduce evacuation 
difficulties in several locations throughout the area.  

Possible mitigation options include increasing the number of evacuation routes by constructing more 
earthquake-hardened bridges (built or remodeled to withstand shaking from a major earthquake); adding 
new evacuation routes that allow for bypassing landslide-prone routes; and/or installing a tsunami 
refuge, otherwise known as a vertical evacuation structure, along Highway 101 west of Lake Lytle. 
 

  



Local Tsunami Evacuation Analysis of Rockaway Beach, Tillamook County, Oregon 

Oregon Department of Geology and Mineral Industries Open-File Report O-17-06 7 

1.0   INTRODUCTION 

A locally generated tsunami from a Cascadia subduction zone (CSZ) earthquake will inundate the Oregon 
coast within tens of minutes (Priest and others, 2009; Witter and others, 2011). Spontaneous evacuation 
on foot would likely be the only effective means of limiting loss of life for the majority of the population, 
as vehicle evacuation would be quickly compromised by traffic congestion and road blockages. CSZ 
earthquakes affecting northern Oregon will likely be of magnitudes on the order of ~Mw 9.0 (Priest and 
others, 2009; Witter and others, 2011), severely damaging bridges and other infrastructure critical to 
evacuation. To evaluate CSZ tsunami impact, Witter and others (2011) used a logic tree approach to 
produce a suite of deterministic scenarios, five of which are mapped statewide, each covering the 
following percentages of potential variability of Cascadia tsunami inundation: XXL1 (100%), XL1 (98%), 
L1 (95%), M1 (79%), and SM1 (26%) (Priest and others, 2013b). In these scenarios a maximum-
considered CSZ tsunami (XXL1) inundates virtually the entire region (depicted as the extent of the yellow 
area in the evacuation map, Figure 1-1). Further complicating evacuation in the area is reliance of 
evacuation routes on bridges over the outlets of Lake Lytle and Crescent Lake (Figure 1-1) as well as the 
possibility of landslides. The objective of this study is to provide local government with a quantitative 
assessment of the difficulty of evacuating the greater Rockaway Beach area for the XXL1 scenario in order 
to evaluate mitigation options such as evacuation route improvement, better wayfinding, land use 
planning actions, and implementation of vertical evacuation. 

We achieve the objective by: 
1) Using the least-cost distance (LCD) approach of Wood and Schmidtlein (2012) to provide estimates 

of walking times to safety, here defined as 20 feet beyond the inundation zone, for every place of 
origin in the community; 

2) Illustrating how quickly the wave front of an XXL1 tsunami advances across the area after the 
causative earthquake; and, 

3) Determining whether an evacuee can stay ahead of the tsunami all the way to safety on the routes 
defined by the LCD analysis.  

 
The latter method is implemented by a new approach termed “beat-the-wave” (BTW), an  analysis of 

evacuation difficulty that shows minimum speed that must be maintained all the way to safety to stay 
ahead of the tsunami (Priest and others, 2015a). We then summarize which parts of the region are most 
in need of tsunami hazard mitigation. 
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Figure 1-1. DOGAMI (2012) tsunami evacuation map for Rockaway Beach showing geographic information; inundation for a maximum-considered 
Cascadia subduction zone (CSZ) tsunami scenario (XXL1) is designated yellow, while the maximum considered distant tsunami scenario (AKMax) is 
shown in orange (Note: the Cascadia scenario encompasses BOTH the yellow and orange zones.) High ground outside the XXL1 hazard area is green. 
See Witter and others (2011) for detailed explanations of the tsunami scenarios shown on this map. 
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2.0   METHODS 

Agent-based and least-cost distance (LCD) modeling are the two most common approaches for simulating 
pedestrian evacuation difficulty. Agent-based modeling focuses on the individual and how travel would 
most likely occur across various cost conditions, such as congestion points (Yeh and others, 2009). LCD 
modeling focuses on characteristics across the evacuation landscape, such as slope and land cover type. 
LCD modeling calculates a least-cost path to the tsunami inundation limit for every point in the inundation 
zone. Time to traverse a route can then be estimated from a pedestrian walking speed under optimal 
conditions (e.g., a nearly flat paved street that has a slight downward decline), increasing or decreasing 
that speed (by increasing the effective distance to safety) to account for changes in slope and other ground 
conditions. Generally speaking, a positive slope (upward) produces slower speeds, as does a negative 
steep slope (downward), while a slight decline (<3 degrees) in the slope reflects the optimal speed and no 
costs. We used the LCD model of Wood and Schmidtlein (2012) because we wanted to understand the 
spatial distributions of evacuation times in the Rockaway Beach area, without having to create a large 
number of scenarios for specific starting points required by agent-based models. We assumed a 
pedestrian walking speed of 4 feet per second (fps) (22 minute/mile; 1.22 meters/second), which is listed 
as a moderate walk by Wood and Schmidtlein (2012). This is the speed generally required to cross from 
curb to curb at signalized intersections (Langlois and others, 1997; U.S. Department of Transportation, 
2012).  

LCD modeling is based on a cost raster where each pixel represents a level of difficulty of movement 
across the surface. In the Wood and Schmidtlein (2012) approach these difficulty or cost values are 
categorized as speed conservation values (SCV). Horizontal cost values represent land cover types across 
the landscape; vertical costs are a function of slope and account for the effort required to traverse hills. 
Horizontal and vertical costs are both considered when calculating least-cost routes. Vertical SCVs will be 
discussed further in Section 2.3. Land cover SCVs adjust the base travel speed using terrain-energy 
coefficients discussed by Soule and Goldman (1972), including “No Data” to note where travel is not 
allowed (e.g., over water, through fences or buildings, and most natural/undeveloped areas for this case 
study). The base travel speed assumes constant energy expenditure. Geospatial data representing roads, 
pedestrian paths, and backshores were generated through manual classification of imagery, field verified, 
and then reviewed by local officials.  

At the urging of local government and technical reviewers, we used a model that considered only roads, 
paths, and the dry sand backshore of beaches as evacuation pathways; all other land cover classes were 
excluded (i.e., undeveloped areas, water, etc.). The backshore is defined as areas landward of the beach-
dune junction approximated by the 18-ft North American Vertical Datum of 1988 (NAVD88) contour. The 
beach (below 18 ft) was excluded owing to uncertainty of travel difficulty (cost) on wet versus dry sand 
and potentially liquefied sand during a local subduction zone earthquake. Due to the nature of the beach 
in this area, modeling extends only to the seaward end of beach access pathways (i.e., no modeling on the 
beach). However, travel times on those paths are probably a good indication of the time and speeds 
required to evacuate the beach. We chose to ignore travel time from buildings or other parts of urban 
areas to the roads, because there is large uncertainty in conditions both before (e.g., exiting a building, 
navigating fenced yards) and after the earthquake (e.g., fallen debris). The modeling approach thus 
produces minimum evacuation speeds to evacuate from the inundation zone. The land cover SCV values 
used are presented in Table 2-1.  
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Table 2-1. Land cover speed conservation values used in modeling 
pedestrian evacuation difficulty in this study. 

Feature Type Speed Conservation Value* 
Roads (paved surface) 1 
Unpaved trails 0.9091 
Beach access pathways (loose sand) 0.5556** 
Everywhere else 0 

*Speed conservation values (SCV) are derived from Wood and Schmidtlein (2012).  
**Beach access pathways have the same SCV as sand given by Wood and Schmidtlein (2012). 

 
 
In coastal towns, landslide-prone slopes and saturated sandy soil are common; therefore slides, 

liquefaction (e.g., water-saturated sand turning to quicksand), and lateral spreading are likely to occur 
during an earthquake. These hazards will damage roads and reduce walking speeds by significant but 
uncertain amounts. Because assigning cost values to areas prone to liquefaction and lateral spreading 
remains highly uncertain, and because slowing of pedestrian speed will likely be highly site specific, we 
did not model their effect on evacuation difficulty. In contrast, due to the steep slopes and evident 
landslide terrain that border several key evacuation routes in the Rockaway area, we evaluated several 
additional scenarios in which certain roads were closed based on local geology, slope, and  proximity to 
known landslides (as documented in DOGAMI’s Statewide Landslide Inventory Database for Oregon, 
(SLIDO, Burns and others, 2016), http://www.oregongeology.org/sub/slido/index.htm). Such an 
approach is a first-order attempt to identify potential evacuation routes that could be vulnerable to 
landslides, which may lead to further investigations of the hazard.  

We implemented LCD modeling by using Esri® ArcGIS® 10.2 software. The path distance tool uses 
geospatial algorithms to calculate the most efficient route from each point in the evacuation zone to 
“safety,” defined for the purposes of this study as ~20 feet (6 m) beyond the maximum inundation limit; 
this is where the tsunami flow depth and velocity are zero. The product of this step is referred to as the 
“least-cost path distance surface.” The safety destination was created by applying a buffer of 20 feet (6 m) 
on the landward side of the inundation boundary polyline and converting this into a raster data file. 
Figure 2-1 summarizes the steps and inputs into the path distance tool as well as the subsequent BTW 
approach. 
 
 

http://www.oregongeology.org/sub/slido/index.htm
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Figure 2-1. Model diagram of path distance approach for tsunami evacuation modeling from Wood and 
Schmidtlein (2012) and Wood and others (2016). SCV is speed conservation value, DEM is digital elevation 
model (Priest and others, 2015b). XXL1 is the maximum-considered Cascadia subduction zone (CSZ) 
tsunami scenario, covering 100 percent of potential CSZ tsunami inundation (Witter and others, 2011, 
Priest and others, 2013b). Unit fps is feet per second. Blue numbers indicate sections in this paper. 
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2.1   Tsunami hazard zone layers 

The tsunami inundation zone used in this study is XXL1 derived from digital data of Priest and others 
(2013a, b). This zone covers 100 percent of potential CSZ inundation (Witter and others, 2011).  

2.2   Lidar elevations layer 

Initially, we created a high-resolution digital elevation model (DEM) by interpolating lidar ground points 
into a 6-ft-resolution raster; in areas characterized by bridges, we used the lidar highest hit data to define 
the bridge walking surface. The grid was further smoothed as it became clear that the slope profiles were 
too noisy, introducing slope artifacts of significant amplitude (e.g., a 3-inch elevation difference between 
cells 1 foot apart yields a 14 degree slope) that added significantly more time to the total calculated time 
(Priest and others, 2015a, b). To smooth the data, we created points at 50-foot intervals along all 
evacuation paths including major roads and at intersections, and attributed those points with elevation 
values from the native 3-foot-cell lidar DEM. We chose this interval because of work by Priest and others 
(2015a, b), who performed trials at 25, 50, and 100 feet; they found that 50 feet achieved the best 
compromise between accuracy and smoothness. Final sampling interval was ~50 feet for straight paths 
and somewhat less for curved paths in order to accurately depict curvatures. We then interpolated points 
using an Esri Natural Neighbor function to produce a smoothed DEM that closely emulated the actual 
elevation values of the lidar while dramatically reducing the slope noise. 

2.3   Vertical speed conservation value (SCV) slope table 

We created a table that associates slopes with a specific SCV value (see Table 2-2 for example values). 
This table used the same values as those of Wood and Schmidtlein (2012), and, as in their approach, we 
estimated the effect of slope on speed from Tobler’s (1993) hiking function: 

walking speed (fps) = 5.5e−3.5 × abs(slope+0.05) 

where slope is equal to the tangent of the slope angle. This formula is based on empirical data of Imhof  
(1950, as cited by Tobler, 1993) and predicts that speed is fastest (5.5 fps) on gentle (−3%) downslopes. 
This table is used to determine the vertical cost of each cell along a least-cost path towards safety based 
on the slope (determined from the DEM).  
 

Table 2-2. Speed conservation values used to calculate 
evacuation difficulty due to traversing hills, with slope 
determined for each pixel from the digital elevation model. 

Slope (degrees) 
Tobler Walking 

Speed (fps) 
Speed Conservation 

Value* 
−10 3.6 1.5 
  −5 4.8 1.1 

−2.75 (ideal) 5.5 1 
  5 3.4 1.6 
10 2.5 2.2 

*Table displays an example set of values. Actual table used in modeling 
includes slope values from −90° to +90° in 0.5° increments. fps is feet per 
second. 
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2.4   Path distance modeling 

The output of the LCD model is a path distance surface showing the least-cost distance to safety from each 
pixel. The least-cost distance includes the actual surface distance plus extra to account for walking 
difficulty due to land cover and slope. We also calculated an LCD backlink raster that shows, for each cell, 
the direction of the next cell on the least-cost path. This raster makes it possible to trace the path to safety 
from any pixel and is equivalent to a flow direction raster, which is the first step in hydrologic modeling 
of topographic surfaces. We use the hydrologic tools in ArcGIS 10.2 and the backlink raster to extract a 
“stream” network to visualize the paths depicting the most efficient pedestrian flow for evacuation. These 
paths represent the shortest efficient distances to safety. The pixel value for cost distance is the actual 
surface distance, along the least-cost path, from the pixel to the point where the path intersects safety plus 
additional distance added in to account for difficulty in walking due to land cover and slope. For example, 
from city hall/fire station complex (fire truck symbol in Figure 2-2), the actual surface distance to safety 
on South Grayling Street is 1,900 feet while the least-cost path distance is 2,800 feet. This difference is 
due to the model having accounted for variations in slope and land cover along the entire route. The 
resulting direction of travel on each path is depicted in GIS as arrows along streets. Locations with 
opposing arrows are where one could travel to safety on two equal alternative paths and define 
boundaries of evacuation flow toward critical points such as the nearest safety location and are directly 
analogous to watershed boundaries or drainage divides in hydrologic modeling (see Figure 1-1, inset, for 
example flow arrows in opposite directions near bridges). 

These boundaries are particularly important in Rockaway Beach, where the majority of the population 
is along or west of Highway 101 and must choose whether to head north or south along the highway 
before reaching a road heading east toward safety. At typical map scales, the large number of arrows 
output by the software can be hard to decipher, in some cases obscuring the evacuation flow zones 
(corridors), so depicting the zones on hazard maps as in Figure 2-2 is recommended. 

We also produced LCD maps for the XXL1 scenario showing the effect of different evacuation scenarios 
and mitigation options including: 

• the collapse of two bridges not retrofitted to withstand a Cascadia subduction zone earthquake;  
• landslide-induced road closures; and, 
• a hypothetical vertical evacuation structure. 
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Figure 2-2. Example of the network of evacuation paths from the least-cost distance analysis limited to 
trails and streets. Evacuation flow zones (corridors) are highlighted for the two main safety destinations 
in the downtown area (white background, pink dots). Additional destinations for the neighborhood to 
the east are also shown (white background, bright green dots). Base map boundary on this and 
subsequent figures is shaded relief from 2009 lidar data; XXL1 inundation boundary on this and following 
figures is from Priest and others (2013b). 

 

 
As of the date of this publication, none of the bridges have been designed to withstand significant 

seismic forces (Mark Buffington, ODOT District 1 Manager, written communication, 2016). LCD maps 
depicting walking times were also modeled in order to compare tsunami arrival times to pedestrian 
arrival (at 4 fps) at various critical junctures. As we constructed these maps, it became apparent that many 
more would be needed to fully explore an array of evacuation speeds appropriate for specific populations 
(e.g., elderly or small children versus able-bodied adults). This is explored further in the next section 
where we discuss the development of tsunami wave front advance maps and integrating tsunami wave 
arrival data directly into the LCD analysis to produce “beat-the-wave” (BTW) maps that estimate the 
minimum speed needed to reach safety ahead of the wave. 
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2.5   Beat-the-Wave (BTW) modeling 

BTW models integrate tsunami wave arrival data directly into the LCD analysis to produce a map of 
minimum speeds that must be maintained to reach safety. To better understand the complexities of 
tsunami wave advance over land, we extracted the time after the CSZ earthquake at which the XXL1 
tsunami flow depth reached more than 0.5 ft at each computational grid point and interpolated those 
arrival data to create a continuous map showing wave arrival times (Figure 2-3). We then examined data 
profiles on various LCD paths (Figure 2-4) to identify possible locations along routes where waves will 
arrive early enough to compromise evacuation (Priest and others, 2015a). Where applicable, we also 
determined when the XXL1 tsunami water elevation reached the bottom of bridge spans, considering that 
the most likely time bridges might be compromised by the full hydraulic force of the tsunami.  

Figure 2-3 illustrates that the XXL1 tsunami arrives along the open coast beaches ~16–18 minutes 
after the start of the earthquake, inundates much of the community in ~20–24 minutes, and reaches the 
hills behind town in ~26–30 minutes. Figure 2-4 illustrates early wave arrivals along two routes that 
cross over low lying areas (creek outlets). These latter data were used to assess the potential for early 
wave arrival, which could cut off parts of the evacuation route thereby stranding the public in those areas. 

The next step in the BTW analysis is to divide the landscape into evacuation flow zones and assign 
wave arrival times to each zone. Flow zone polygons are drawn manually using evacuation routes, which 
are a derivative product from the path distance tool. Flow zone rasters may also be generated using the 
watershed tool in the Hydrology toolset. However, we found this latter method to be useful as a guide only 
and not as functional data. Wave arrival times are assigned based on the time when the first wave reaches 
the point of safety for each zone. Ten minutes is then subtracted from the simulated tsunami arrival times 
to account for the time in which earthquake shaking takes place, as well as disorientation, and the time 
required to evacuate buildings. Using the March 11, 2011, Tohoku earthquake (USGS, 2012) as an 
analogue to an XXL1 or L1 scenario, the minimum delay is probably ~3–5 minutes of strong shaking for 
the ~Mw 9.0 event. There are little empirical data on how long it takes people to begin evacuation after 
shaking, but Mas and others (2013) determined a mean of 7 minutes in 2010 and 2011 surveys at La 
Punta, Peru, which had experienced several local earthquakes and tsunamis over the last ~400 years, the 
last being in 1974. We therefore simulate a delay of 10 minutes mainly for earthquake shaking (the 
minimum of 3 minutes for shaking plus 7 minutes based on the La Punta survey). 

After creating flow zone corridors, the path distance surface is divided by pre-determined evacuation 
speeds to yield multiple evacuation time maps of the region (cost distance divided by speed equals time). 
These time maps are then clipped twice: once to separate flow zones and again based on the unique wave 
arrival time for each zone. For each evacuation speed within a flow zone, the surface is clipped at the point 
where the time to reach safety is greater than the wave arrival time. These clipped grids are then 
mosaicked together, with the minimum speed for each cell having been maintained. These steps are 
described graphically in Figure 2-1.  

Potential early wave arrival locations are treated as unique flow zone corridors (the low point is the 
effective destination) and the resulting BTW speeds are compared to that of the flow zone as a whole to 
determine if BTW speeds need to be adjusted upwards in order to “beat the wave” at all points along a 
route. In both cases shown in Figure 2-4, the speeds required to reach safety were faster than the speeds 
required to get past the critical intermediate point and therefore no adjustments were made to final BTW 
data. This will not always be the case, as demonstrated in our Seaside analysis, where BTW speeds 
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required to cross Neawanna Creek were higher than evacuation speeds necessary to reach safety (Priest 
and others, 2015a, b). 

Finally, we examined the effect of bridge collapse, by performing scenarios initially with all bridges 
intact, followed by eliminating one or two of the key bridges in the Rockaway area. This approach yielded 
two scenarios with increasing evacuation difficulty for Rockaway Beach:  

1) Existing road network intact (i.e., all bridges intact), 10-minute delay from start of earthquake 
before starting evacuation; and, 

2) Failure of non-seismically retrofitted bridges, 10-minute delay; these failures will have no effect 
on evacuation from Nedonna Beach, Twin Rocks and Barview. 

In addition to bridge failure, we examined the potential for landslides to cut off certain roads. This was 
done by examining the local geology, SLIDO, and the proximity of established roads to known landslides. 
Similar to the bridge-out scenarios, we incorporate a 10-minute evacuation delay in the landslide 
scenarios. 

Actual travel speeds on any evacuation route will require either variable expenditure of energy to 
maintain the BTW speed in all conditions, or higher speeds in easier terrain (flat paved streets) to 
compensate for slowing in more difficult terrain (e.g., steep slopes or sand). 

Binning of evacuation speeds was initially limited to five categories, which is typically the maximum 
number that the public can easily interpret on a map. A literature review of typical pedestrian speeds by 
Fraser and others (2014) found five travel speed groups: elderly, child, adult impaired, adult unimpaired, 
and running (Table 2-). The ranges of speeds for these groups at one standard deviation (the last two 
rows of Table 2-) provide some guidance for establishing bins that would be useful on the BTW map. 
Speed categories in the map explanation were then given qualitative names such as “slow walking” and 
“running” so the public can relate speed bins to their experience. Of particular interest are groups that 
will be most vulnerable, such as impaired adults and the elderly with mean speeds of 3 fps and a range of 
~2–4 fps (Table 2-). After examining the range of BTW speeds for Seaside (Priest and others, 2015b) and 
reviewing a number of references describing speed categories (Paul, 2013; Margaria, 1968), we settled 
on the following five speed bins:  

• Slow walking at 0–2 fps; 
• Walking at 2–4 fps for elderly and impaired adults; 
• Fast walking to slow jogging at 4–6 fps for unimpaired adults; 
• Jogging at 6–8 fps for fit adults; and,  
• Running at > 8 fps. 

However, for extremely long path distances and short wave arrival times, we further divided the highest 
bin (>8 fps) into three additional bins to better understand the likelihood of survivability: 

• Running at 8–10 fps; 
• Sprinting at 10–14.7 fps (14.7 fps = 10 mph); and 
• Unlikely to survive at > 14.7 fps. 

A small experiment was conducted at Seaside to evaluate the validity of the walk, fast walk/slow jog, 
and jog BTW evacuation speed bins and to assess the difficulty in maintaining a constant minimum speed 
over the course of an entire evacuation route (Gabel and Allan, 2016). Five key routes were traversed by 
Gabel and Allan, recording their average speed along the route and when they reached critical locations 
(bridges, low areas, and safety). Overall, the tests indicated that when traveling at the speed specified by 
the BTW data, an evacuee will reach safety ahead of the tsunami. However, as speeds fall below the 
prescribed BTW speeds, the results of Gabel and Allan confirmed that the tsunami could overrun the 
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individual, effectively killing them. This limited test of the BTW data suggests that they are reasonable 
guides to minimum evacuation speeds necessary to reach safety ahead of the tsunami.  

 
 
Table 2-3. Travel speed statistics for each travel speed group, compiled from travel speeds in the 
literature by Fraser and others (2014). σ denotes standard deviation. 

 
Adult Impaired Adult Unimpaired Child Elderly Running 

Minimum 1.9 fps 2.9 fps 1.8 fps 0.7 fps 5.9 fps 

Maximum 3.5 fps 9.2 fps 6.9 fps 4.3 fps 12.6 fps 

Mean 2.9 fps 4.7 fps 4.2 fps 3.0 fps 9.1 fps 

σ 0.6 fps 1.6 fps 2.6 fps 1.0 fps 3.3 fps 

Mean + 1σ 3.5 fps 6.3 fps 6.8 fps 4.0 fps 12.4 fps 

Mean − 1σ 2.3 fps 3.1 fps 1.6 fps 2.0 fps 5.8 fps 

fps is feet per second. 
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Figure 2-3. Illustration of XXL1 tsunami arrival times after a Cascadia subduction zone earthquake in the 
greater Rockaway Beach area; A) Nedonna Beach; B) Rockaway Beach; C) Twin Rocks/Barview. 
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Figure 2-4. Time after the XXL1 earthquake when simulated tsunami flow depth exceeded 0.5 ft for 
selected evacuation routes in Rockaway Beach. Early tsunami wave arrival at the outlets to Crescent Lake 
(pink profile and map route) and Lake Lytle (orange) were examined to see if they were critical points for 
setting the minimum times for evacuation of the entire evacuation flow zone seaward of each point. In 
both cases we found that the early wave arrivals were not critical and the speeds required to reach safety 
were fast enough to enable evacuees to get past these low points before the tsunami arrived. Note that 
although tsunami wave arrival times are reduced by 10 minutes for BTW mapping in order to incorporate 
delay in evacuation from the effects of earthquake shaking, the times shown here reflect the actual wave 
arrival times 
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3.0   RESULTS 

In general we find that unimpaired adults should be able to escape a maximum-considered Cascadia 
tsunami from all but a few critical beach front areas of greater Rockaway Beach. In this section we examine 
the broader regional findings, as well as evacuation modeling results for three areas: Nedonna Beach, 
Rockaway Beach, and Twin Rocks–Barview. 

Figure 2-3 demonstrated the range of tsunami wave arrival times for an XXL1 local tsunami that 
inundates the area. As described previously, these arrival times are as little as 16 minutes on the beaches; 
~20–24 minutes to inundate each community; and 30 minutes for the tsunami to reach its maximum 
runup limits. Using an average pedestrian evacuation speed of 4 fps (classified as a walk) and identified 
path distances, we present modeled pedestrian evacuation times based on intact and unimpeded routes 
in Figure 3-1. For the purposes of this map, we assume bridges that have not been retrofitted to withstand 
a > Mw 9.0 earthquake will fail and are not available for evacuation. Pedestrian evacuation times are 
generally about 10–25 minutes (yellow/orange colors) across much of the area because many routes are 
relatively close to areas outside the hazard zone; “safety” is designated as green and dashed lines indicate 
trails in this and in all subsequent figures. Along Highway 101 between Lake Boulevard and North 8th 
Avenue (and side streets), the default walk evacuation times increase significantly, from 30 to 55 minutes 
(Figure 3-1) due to the hypothetical bridge failures. This is the only area within the region where we 
believe that evacuation to safety will be challenging. This assumes that the public will walk at the modeled 
speed of 4 fps. Regardless, these results highlight several challenges for evacuation at these locations.  

Modeled “Beat the Wave” (BTW) speeds for the region are presented in Figure 3-2. Recall that these 
figures integrate the results of the tsunami wave arrival times and the least-cost path distance analyses, 
enabling the public to better understand the minimum speeds required to evacuate the inundation zone 
before being caught by the approaching tsunami.  

Colors represent the speed that must be maintained from each location all the way to safety. If an 
evacuee slows down for some portion of the route, he/she must account for the time deficit by traveling 
faster than the required speed for the remainder of the route. We stress this point because the map can 
be misleading: as a route approaches safety the roads along which one travels shows a slower BTW speed; 
however, an evacuee cannot slow down. The slower speed is relevant only for someone starting 
evacuation from that closer location.  

For the purposes of this map, we assume that bridges that have not been retrofitted to withstand a 
> Mw 9.0 earthquake will fail. In addition, we include a 10-minute delay before commencing the 
evacuation to account for the expected dazed and disorientated state of the public following the severe 
earthquake shaking, and the time required to exit buildings. Table 3-1 presents a summary of the range 
of speeds and their various conversions that will be used throughout the remainder of this report. 

Table 3-1. Pedestrian evacuation speed categories and their conversions. 

Description Feet per Second (fps) Miles per Hour (mph) Minutes per Mile 
Slow walk 0–2  0–1.4 44 
Walk 2–4 1.4–2.7 44–22 
Fast walk / slow jog 4–6 2.7–4.1 022–14.7 
Jog 6–8 4.1–5.5 014.7–11 
Run 8–10 5.5–6.8 11–8.8 
Sprint 10–14.7 6.8–10 8.8–6.0 
Unlikely to survive >14.7 >10 >6.0 
Note: walking at speeds of 2–4 fps is considered a reasonable measure for the elderly and for impaired 
adults (see Figure 6 in Fraser and others, 2014). 



Local Tsunami Evacuation Analysis of Rockaway Beach, Tillamook County, Oregon 

Oregon Department of Geology and Mineral Industries Open-File Report O-17-06 21 

 
As can be seen in Figure 3-2, our modeled BTW results confirm that most of the region is classified 

with minimum speeds characterized as a slow walk (yellow roads) or walk (light orange roads). This 
suggests that evacuation to safety is achievable for much of the area. However, it is inevitable that 
following a disaster other factors will almost certainly contribute to impede the public’s travel times. At 
this point, our modeling does not account for these potential ancillary effects. As a result, the public 
should maintain the overarching goal of immediately evacuating following the earthquake, and 
moving as rapidly as possible in order to ensure they reach safety with ample time to spare (i.e., 
reduce the 10-minute delay assumed in this analysis). 
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Figure 3-1. Modeled pedestrian evacuation times assuming a 4 fps speed during an XXL1 local tsunami 
event in the greater Rockaway Beach area: A) Nedonna Beach, B) Rockaway Beach, C) Twin Rocks-
Barview.  
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Figure 3-2. Modeled “Beat the Wave” speeds for XXL1 local tsunami event in the greater Rockaway 
Beach area; A) Nedonna Beach; B) Rockaway Beach; C) Twin Rocks–Barview. The speed indicated at the 
start of an evacuation route must be maintained the entire way to safety (averaged along entire route), 
i.e., an evacuee cannot slow down as he/she gets closer to safety.  
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Figure 3-2 confirms that evacuation for much of the area is achievable with the exception of a portion 
of downtown Rockaway Beach along Highway 101 (and side streets) between Lake Boulevard and North 
8th Avenue where evacuation will be more challenging due to route dependence on crossing non-
retrofitted bridges (Figure 3-2B). Options such as vertical evacuation or hardening of bridges could be 
considered in this area to save lives. Landslides may further complicate evacuation in several areas, as 
discussed below. 

3.1   Nedonna Beach 

Figure 3-3 defines the least-cost (path) distance modeling for the Nedonna Beach neighborhood. Recall 
that the purpose of this type of modeling is to identify and define the detailed evacuation routes, which 
we then use to define the evacuation flow zones (corridors) in each community. Each of the evacuation 
flow zones effectively defines the area being evacuated and the associated nearest destination points of 
safety (defined by the green and black circles) located outside of the inundation zone. The solid green 
color delineates areas outside the tsunami inundation zone and hence safety from a maximum considered 
XXL1 local tsunami event. 

Figure 3-3 reveals that the Nedonna Beach area is characterized with three evacuation community 
flow zones (corridors). The entire neighborhood is separated from Highway 101 and high ground to the 
east by a thin stretch of low-lying marsh and has only one road in and out (Beach Street). However, there 
are at least two trails (dashed lines) connecting the neighborhood to Highway 101. People located in the 
northern end of the neighborhood (purple polygon in Figure 3-3) would evacuate due east along Section 
Line Street, continue up a trail, cross the Tillamook railway line (which runs parallel to Highway 101 on 
the west side), and move north along Highway 101 to the safety destination. Those residents and visitors 
in the central part of the neighborhood (blue-green region in Figure 3-3) would evacuate due east along 
Riley Street and its adjoining footpath, cross Highway 101 and head up to the Scenic View Reservoir. 
People in the south end of the neighborhood (salmon-colored region in Figure 3-3), including those 
visiting Manhattan Beach State Park, would evacuate toward Highway 101 along Beach Street. East of 
Highway 101 they would head uphill to the McMillan Creek Reservoir.  

Having defined the evacuation flow zones, we modeled BTW speeds for the Nedonna Beach area 
(Figure 3-4). Because tsunami wave arrival times for the neighborhood are ~22–26 minutes (Figure 2-3) 
and most locations are relatively close to evacuation destinations (i.e., safety), the modeled BTW speeds 
indicate that the bulk of the area is characterized by minimum evacuation speeds that range from 
slow walk to walk. To better understand the potential effects of impediments to evacuation and possible 
mitigation options, we defined three scenarios based on the following (all scenarios include a 10-minute 
delay taken from the beginning of the earthquake): 

1. Existing road and trail network remains intact (Figure 3-4); 
2. All three safety destinations are unreachable due to hypothetical landslide activity, forcing 

evacuation to the high school (Figure 3-5A); 
3. As above in 2, but with the inclusion of the northernmost safety destination on Highway 101, 

assuming the route will be hardened to survive the earthquake (Figure 3-5B). 
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Figure 3-3. Least cost (path) distance modeling for the community of Nedonna Beach showing 
evacuation flow zones. 
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Figure 3-4. “Beat the Wave” speed modeling for the community of Nedonna Beach including 10-minute 
evacuation delay. 
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3.1.1   Nedonna Beach Scenario 1 — Existing road network remains intact 
Figure 3-4 reveals that residents in the Nedonna Beach neighborhood must travel at speeds considered 
to be a slow walk to a walk in order to reach safety, assuming the existing road and trail network remains 
intact and passable. For nearly all residents, evacuation to safety is attainable under this scenario. A map 
showing detailed evacuation routes and flow zone corridors for this scenario is provided in Appendix A. 

3.1.2   Nedonna Beach Scenario 2 — Multiple landslide failures north of Nea-Kah-Nie School 
The hashed polygons in Figure 3-5 represent terrain identified as landslide prone. Two of the three main 
safety destinations rely on routes that are directly in the path of what could be a significant landslide 
triggered by a Cascadia subduction zone earthquake. Although safety on Highway 101 for the 
northernmost watershed is not in a designated landslide area, the trail connecting Section Line Street to 
Highway 101 is steep, is composed of loose boards, and could conceivably fail during the earthquake. 
Because the terrain is relatively steep, using this trail could be a significant challenge for the public. As 
will be demonstrated below, maintaining and potentially earthquake-hardening this trail further is 
considered to be important for the Nedonna Beach community. 

If all safety destinations north of Neah-Kah-Nie School become compromised by landslide activity, 
everyone in Nedonna Beach and Manhattan Beach State Park would have to evacuate southward to the 
Neah-Kah-Nie High and Middle Schools tsunami trail (Figure 3-5A). As can be seen in Figure 3-5A, 
landslide activity significantly increases evacuation difficulty for everyone, but particularly for residents 
living at the north end of Nedonna Beach who must now run (equates to ~6 mph or a 10 minute/mile 
pace) to reach safety. Even residents nearest to the high school experience an increase in their required 
minimum evacuation speed, which increases to a fast walk/slow jog (referred to as fast walk for the 
remainder of the report). These travel speeds must be maintained along the entire length of the 
evacuation route. Although achievable for fast runners, such speeds would almost certainly be challenging 
and perhaps impossible for certain age groups, including the elderly, physically impaired, and families 
with children and infants. Thus, with this scenario we would expect to see some loss of life in the Nedonna 
Beach neighborhood as a result of being caught by the tsunami. This is especially the case given the strong 
likelihood that the routes will have significant debris on them that could further slow travel. 

3.1.3   Nedonna Beach Scenario 3 — Landslide failure constrained to the McMillan Creek and 
Scenic View Reservoirs 
In the previous scenario, the north end of Nedonna Beach is the most vulnerable because of the greater 
distance to safety. To better understand the implications of this site we modeled a second landslide 
scenario that affects the McMillan Creek and Scenic View Reservoirs, while allowing for safe evacuation 
in the north along the Section Line Street and trail. This scenario assumes that this trail is hardened 
sufficiently to withstand the earthquake shaking and potential collapse of parts of the trail. The model 
results for this scenario are presented in Figure 3-5B. With one of the “original” safety destinations 
reinstated, evacuation of the Nedonna Beach community becomes more attainable. BTW evacuation 
speeds are reduced significantly such that they now fall into the walk to fast walk categories, compared 
with slow jog and run as identified in Figure 3-5A. Under these circumstances, an XXL1 tsunami would be 
survivable for many more people. These findings highlight the importance of maintaining and hardening 
the Section Line Street trail system to Highway 101 for evacuation purposes.  
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Figure 3-5. “Beat the Wave” speeds for Nedonna Beach based on two hypothetical landslide scenarios: A) All safety destinations north of the high 
school are unavailable due to landslides (hatched area), and B) hardening of the trail at Section Line Street allows evacuation to the north, although 
both reservoir safety destinations remain unavailable due to landslides. Both scenarios include a 10-minute evacuation delay. 
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3.2   Rockaway Beach 

Figure 3-6 presents the least-cost (path) distance modeling for the community of Rockaway Beach. As 
noted previously, this analysis is used to identify and define detailed evacuation routes, which we then 
use to delineate the evacuation corridors or flow zones in each community.  

As can be seen in Figure 3-6, the Rockaway Beach area is characterized with 14 evacuation flow zones 
(corridors), with each zone having one or two evacuation destinations (assuming non-retrofitted bridges 
are out). For example, people located in the pink colored polygon west of Crescent Lake and Lake Lytle 
would evacuate south along Highway 101 and then east along North 6th Avenue (Figure 3-6). Individuals 
located in the downtown area (yellow zone) would make their way south and east to South Grayling Street 
(north side of the Pacific View neighborhood) (Figure 3-6). Residents in the south end of the area would 
head east via any number of east-west streets: South 6th Avenue (salmon-colored polygon), East 
Washington Avenue (pink), South Victoria Avenue (teal), or Hollyhock Street (lilac) (Figure 3-6). 

Having defined the evacuation flow zones, we calculated BTW speeds for the Rockaway Beach area 
(Figure 3-7). Because tsunami wave arrival times for Rockaway Beach are ~22–26 minutes and most 
locations are relatively close to evacuation destinations (i.e., safety), the modeled BTW speeds indicate 
that much of the area is characterized by minimum evacuation speeds that range from slow walk to walk. 
One notable exception is the area west of Crescent Lake and Lake Lytle where multiple bridge failures are 
expected to occur; bridge failures would result in much longer travel distances to safety, meaning higher 
minimum evacuation speeds that could reach a fast walk to a sprint (Figure 3-8).  

To understand the effects of various potential impediments to safe and rapid evacuation, including 
possible mitigation options, we define seven scenarios based on the following:  
1. The existing road and trail network is available for safe evacuation including all bridges, which are 

considered undamaged (Figure 3-7);  
2. Bridges that have not been retrofitted to survive a > Mw 9.0 earthquake are considered to fail such 

that evacuation routes at these locations are cut off. This applies to the Highway 101 bridge by Lake 
Boulevard and NE 12th Avenue over the Lake Lytle outlet (Figure 3-8);  

3. As above, in 2, but with the Highway 101 bridge hypothetically hardened to survive the earthquake 
shaking, allowing for safe evacuation across the bridge to the north (Figure 3-9A);  

4. As above in 2, but with the NE 12th Avenue bridge hypothetically hardened to survive the earthquake 
shaking enabling evacuation to the east (Figure 3-9B);  

5. As above in 2, but with the building of a hypothetical vertical evacuation structure at Highway 101 
and NW 11th Street (Figure 3-9C);  

6. As above in 2, but with all safety destinations on the north side of the Pacific View neighborhood 
unreachable due to hypothetical landslide activity (Figure 3-10A); and, 

7. As above in 5, but with an additional destination removed on the west side of the Pacific View 
neighborhood (South 6th Avenue) (Figure 3-10B). 

 
Each of these scenarios include a 10-minute delay taken from the beginning of the earthquake that 
accounts for shock associated with the earthquake, and the time required to mobilize and exit buildings. 
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Figure 3-6. Least cost (path) distance modeling for the community of Rockaway Beach showing 
evacuation flow zones. (Watershed polygons are shaded for the purpose of identification only, no 
meaning in the actual colors.) 
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3.2.1   Rockaway Beach Scenario 1 — Existing road network remains intact 
Figure 3-7 indicates that BTW speeds throughout the area are characterized with minimum evacuation 
speeds that range from slow walk to walk with small areas of fast walk, mostly west of Lake Lytle. This 
includes a 10-minute delay to the start of evacuation and is entirely due to close proximity to evacuation 
destinations (safety, characterized by the green and black circles). Although still a manageable fast walk, 
BTW speeds west of Lake Lytle are the highest for this scenario; this highlights the fact that even in the 
best case, this is the area farthest from safety and merits additional consideration with respect to possible 
mitigation options. 

3.2.2   Rockaway Beach Scenario 2 — Non-retrofitted bridges fail 
In this scenario, both the Highway 101 and NE 12th Avenue bridges fail during the earthquake shaking. 
As a result, evacuation across the bridges is eliminated and alternate evacuation routes must be used. The 
primary effect of bridge failure in Rockaway Beach is to force evacuees to travel significantly farther to 
their nearest safety destination, now located to the south.  

Under this scenario, residents, visitors, and businesses on Highway 101 (and side streets) between 
Lake Boulevard and North 8th Avenue must evacuate south along Highway 101 and then east along North 
6th Avenue (Figure 3-8) as opposed to heading east on NE 12th Avenue or north to the high school (just 
north of the map extent), assuming that bridges survive (Figure 3-7). In addition, due to the increased 
evacuation distances, the minimum speeds required to reach safety increase significantly from a 
walk/fast walk to speeds that range from jog to sprint. As a result, safe evacuation for the elderly, physically 
impaired, and families with children would likely be challenging under this scenario. All other areas 
throughout Rockaway Beach remain unchanged. A map showing detailed evacuation routes and flow zone 
corridors for scenario 2 is provided in Appendix B. 
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Figure 3-7. “Beat the Wave” speed modeling for the community of Rockaway Beach including a 10-
minute evacuation delay with all bridges intact; detailed routes can be found in the digital data. 
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Figure 3-8. “Beat the Wave” speed modeling for the community of Rockaway Beach including a 10-
minute evacuation delay with non-retrofitted bridges unavailable for evacuation. See Appendix B and 
digital data for detailed routes. 
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3.2.3   Rockaway Beach Scenario 3 — Highway 101 bridge hardening 
With the sobering reality that residents and visitors on Highway 101 between Lake Boulevard and NE 
12th Avenue would probably not survive a maximum considered XXL1 local tsunami, we modeled a 
hypothetical case that reflects hardening of the Highway 101 bridge, allowing more people in the 
vulnerable area to evacuate north to the high school (Figure 3-9A). With this change, evacuation 
throughout this area becomes attainable for more people (compared with the bridges-out scenario in 
Figure 3-8). BTW evacuation speeds are reduced significantly such that they now fall into the walk to slow 
jog categories, compared with a worst-case sprint as shown in Figure 3-8. Under these circumstances, an 
XXL1 tsunami would be survivable for the majority of residents, visitors, and business persons located in 
this evacuation community. 

3.2.4   Rockaway Beach Scenario 4 — NE 12th Avenue bridge hardening 
Scenario 4 considers the case for hardening of the NE 12th Avenue bridge instead of the Hwy 101 bridge. 
Figure 3-9B shows that keeping this bridge passable for evacuation purposes significantly reduces the 
required BTW evacuation speeds needed to reach safety, particularly when compared with the previous 
scenario that results in hardening of the Highway 101 bridge (Figure 3-9A).  

From these model results, we believe further investigations exploring hardening existing bridge routes 
is warranted, because these options clearly demonstrate the potential to decrease loss of life during a 
Cascadia event. 

3.2.5   Rockaway Beach Scenario 5 — Construction of a vertical evacuation structure 
In some localities, safe and effective evacuation to high ground may not be feasible due to terrain 
challenges (high ground is too far away), or due to the potential failure of critical evacuation infrastructure 
such as bridges. Given these circumstances, communities may want to explore the construction of a 
vertical evacuation structure, designed to withstand the forces directed at it by the tsunami. Such 
structures include soil berms, multi-story parking garages, community facilities, commercial facilities 
(e.g., hotels), and schools (Applied Technology Council, 2012). In the United States, the first vertical 
evacuation structure was built at the Ocosta Elementary School on the Westport Peninsula in Washington 
State. The structure is the school’s new gymnasium and has unrestricted (open) access to its rooftop 
where school children and residents may congregate during a tsunami evacuation; the vertical evacuation 
structure was opened in June 2016. 

Here we explore the placement of a vertical evacuation structure along the west side of Lake Lytle, at 
the intersection of Highway 101 and NW 11th Street, due to it being centrally located to areas requiring 
high BTW speeds (Figure 3-9C). Further, ground level at this location is slightly higher than the 
surrounding area, making it potentially more desirable from an engineering/cost standpoint. As can be 
seen in Figure 3-9C, building a vertical evacuation structure at this location would significantly decrease 
the required evacuation speeds needed to reach safety — reduced from a sprint to predominantly walk 
and fast walk. These changes provide a striking visual argument for the benefits of such a structure 
centrally located to a vulnerable population.  

As noted previously, a vertical evacuation structure could be designed in a variety of ways, some of 
which could add significant economic benefit to the area. Importantly, such a structure would need to be 
designed to exceed the maximum flow depth in this area and would need to be able to withstand the forces 
directed at it. Using our XXL1 model results used for evacuation purposes, we estimate that the design 
elevation must exceed the maximum tsunami flood elevation of ~19 m (62 ft) (a maximum flow depth of 
~14 m [46 ft]) (see Appendix D for XXL1 maximum flow depths for the study area). Furthermore, the 
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structure would need to be of a sufficient strength to withstand the tsunami current flow and be large 
enough to accommodate the estimated number of evacuees in the immediate area (defined as the flow 
zone surrounding the structure in Figure 3-9A).  

From these model results, we believe further investigation into the building of a vertical evacuation 
structure is warranted, because the numbers of people saved could be much larger compared with 
hardening bridges. The significant height of the structure, potential large foot print, and large cost are 
likely to be a deterrent. Costs versus benefits must be carefully evaluated among all these options, 
including the possibility of designing a structure based on a smaller tsunami scenario, i.e., an L1 (Large) 
instead of an XXL1 scenario, which experiences significantly smaller flow depths.  
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Figure 3-9. “Beat the Wave” evacuation speeds for three hypothetical mitigation scenarios for 
Rockaway Beach. A) The Highway 101 bridge is hardened to survive the earthquake and is available for 
evacuation, B) the NE 12th Avenue bridge is hardened to survive the earthquake, and C) the construction 
of a vertical evacuation structure near the intersection of Highway 101 and NW 11th Avenue. All scenarios 
include a 10-minute evacuation delay. 

 

A B 
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3.2.6   Rockaway Beach Scenario 6 — Landslide failure on the north side of the Pacific View 
neighborhood 
Steep slopes and landslide terrain adjacent to the Pacific View neighborhood have the potential to remove 
several safety destinations in the heart of Rockaway Beach. To test the importance of roads at risk of 
becoming impassable, we generated BTW speeds and evacuation flow zones for a scenario with all safety 
destinations along the north side of the Pacific View neighborhood removed. This includes the following 
streets adjacent to South 2nd Avenue: Grayling Street, Juniper Street, Keel Street (grassy easement, not 
paved), Neptune Street, and Rock Creek Road (Figure 3-10A). Overall, evacuees can still reach high 
ground via South 2nd Avenue with a minimum evacuation speed of walk to slow walk. There is a small 
increase in the number of residents that must walk as opposed to slow walk, and on SE 4th Avenue 
(Rockaway Beach RV Park) minimum evacuation speed increases from walk to fast walk.  

3.2.7   Rockaway Beach Scenario 7 — Landslide failure on the north and west sides of Pacific 
View neighborhood 
Although there are no mapped landslides at the east end of South 6th Avenue, SLIDO reports that the 
hillside experienced a landslide (roughly 200 ft long by 90 ft wide) during the February 1996 storms 
(Figure 3-10). In addition to this historical landslide along the evacuation route, the hillside above the 
path reaches a slope of 45°, well beyond the angle of repose for the underlying sandstone bedrock. These 
facts suggest that it would not be surprising if some sort of slope failure in occurred in response to a major 
Cascadia earthquake that could prevent people from reaching safety. Therefore we ran an additional 
landslide scenario in this area, removing the safety destinations on the west side of the Pacific View 
neighborhood in addition to those in the north (Figure 3-10B).  

As expected, people on South 6th Avenue end up having to travel much farther to reach safety. 
Minimum evacuation walking speeds correspondingly increase from slow walk and walk to fast walk. Flow 
zone boundaries show that there is a new decision point that results from the removal of safety at South 
6th Street: many evacuees who would have evacuated up South 6th Avenue would now head north to 
South 2nd Avenue while the remainder would head south to Victoria Avenue. These findings highlight the 
importance of establishing sufficient wayfinding information along core evacuation routes, while 
recognizing that other routes may become impassable. Furthermore, residents in certain community 
evacuation corridors need to plan for potential scenarios where one route is eliminated due to a landslide, 
while other routes remain open. 
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Figure 3-10. “Beat the Wave” evacuation speeds for two hypothetical landslide scenarios for Rockaway Beach. A) Earthquake-induced landslides 
prevent evacuation on the north side of the Pacific View neighborhood, and B) As in scenario A but with the addition of another closure at the east 
end of South 6th Avenue. Both scenarios include a 10-minute evacuation delay. 
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3.3   Twin Rocks and Barview 

Figure 3-11 defines the least-cost (path) distance modeling for Twin Rocks and Barview. The area is 
characterized with six community evacuation flow zones (corridors). Visitors at the Barview County Jetty 
Park would evacuate up “sand hill” in the southwest (yellow polygon), while residents at Camp Magruder 
and Old Pacific Highway (red polygon) would evacuate up “sand hill” from the north side within Camp 
Magruder. Shorewood RV Park and the northern end of Old Pacific Highway (blue polygon) would 
evacuate east across Highway 101 toward the Gravel Pit. Pacific Street and Shand Avenue (purple 
polygon) would evacuate to Twin Rocks Friends Camp and up to the reservoir. The public located on 
Highway 101 (pink polygon) would evacuate inland up a number of unnamed side roads located on the 
east side of the highway. There are no homes in this area, so we expect these to be generally unused with 
the exception of the Harborview Drive community (Terwilliger Heights flow zone, orange polygon in 
Figure 3-11). 

BTW speeds have been modeled for the Twin Rocks and Barview areas for the six flow zones. These 
data are presented in Figure 3-12 based on two scenarios assuming the previously mentioned 10-minute 
delay before evacuation starts: 

1. Existing road and trail network remains intact (Figure 3-12A); and 
2. Hypothetical landslides block safety destinations along Highway 101 (Figure 3-12B). 

 

3.3.1   Twin Rocks–Barview Scenario 1 — Existing road network remains intact 
Similar to Nedonna Beach, the Twin Rocks and Barview region has ample high ground located nearby. The 
required minimum evacuation travel speeds for this area ranges from a walk to fast walk in order to reach 
safety (Figure 3-12A). For many people, evacuation to safety is possible. The west end of the county park, 
closest to the north Tillamook jetty, and Shorewood RV Park are the farthest locations from safety; the 
minimum evacuation speed is a  fast walk in order to “beat the wave.” As previously discussed, this speed 
may be difficult for certain populations to maintain. A map showing detailed evacuation routes and flow 
zone corridors for this scenario is provided in Appendix C. 

3.3.2   Twin Rocks–Barview Scenario 2 — Landslides block routes to safety east of Highway 
101 
Landslide terrain adjacent to Highway 101 will likely restrict evacuation along the highway and could 
exclude some safety destinations from consideration. Figure 3-12B reveals little change to the overall 
evacuation flow zone corridor boundaries and minimum evacuation speeds for the area. As a result of 
this modeling, we believe the area of Twin Rocks and Barview does not need to consider landslide-induced 
evacuation mitigation options. Although we did not model a vertical evacuation structure in this region, 
such a structure might merit further evaluation, given the fast walk speed required to reach safety from 
the Shorewood RV Park. 
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Figure 3-11. Least cost (path) distance modeling for the communities of Twin Rocks and Barview showing 
evacuation flow zones. 
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Figure 3-12. “Beat the Wave” speeds for Twin Rocks and Barview: A) existing road and trail network remains intact, and B) landslides eliminate 
safety in three locations along Highway 101, requiring evacuees in that area to travel further to reach safety. Due to the close proximity of other 
safety destinations, however, BTW speeds are barely affected. Both scenarios include a 10-minute evacuation delay. 
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4.0   “BEAT THE WAVE” MAPS 

“Beat-the-Wave” (BTW) maps for the greater Rockaway Beach area are presented in Figure 4-1, Figure 
4-2, and Figure 4-3. These figures reflect the most conservative scenario with non-retrofitted bridges 
removed from the modeling. Landslide-induced road closures were not included due to uncertainty over 
where they might occur and how they might impact pedestrian evacuation. 

The BTW maps depict with arrows and evacuation flow zones the most efficient evacuation routes 
along streets and trails. Evacuation flow zone boundaries, defined by the black dash-dot boundary lines, 
are especially useful because they help clarify evacuation community routes and depict break points 
between two equally efficient routes to safety. Evacuation destinations (points of safety) are characterized 
by the green and black circles. Evacuation flow zone corridors and the direction arrows to the evacuation 
destinations thus provide valuable guidance, regardless of BTW speed information. 

As discussed previously, estimates of needed speed to “beat the wave” for the maximum considered 
XXL1 tsunami in the greater Rockaway Beach area indicate that people in much of this area would able to 
evacuate to high ground, with minimum speeds in the walk category (2–4 fps). Previous studies have 
found that the elderly are able to maintain speeds of ~2–4 fps for only short distances (Fraser and others, 
2014). Langlois and others (1997) observed that ~0.5 percent of 72 years old and older pedestrians in a 
sample of 989 people could cross an 8-ft course at ≥ 4 fps (81.1 percent could walk at only 1–3 fps). This 
observation suggests that survival for older residents is attainable for much of the area. This assumes that 
the evacuation routes are easily traveled after the earthquake and, importantly, are well signposted. One 
notable exception is the Shorewood RV Park, which is far enough from its nearest safety destination to 
require a faster minimum evacuation speed (characterized as a fast walk, which may not be attainable for 
older residents living in that community (Figure 4-3).  

Removing the Highway 101 and NE 12th Avenue bridges has been shown to severely compromise 
evacuation for residents located west of Lake Lytle and Crescent Lake (Figure 4-2). Our analyses 
demonstrate that hardening the Highway 101 bridge (Figure 3-5A) or adding a vertical evacuation 
structure at NW 11th Street and Highway 101 (Figure 3-5B) would greatly enhance evacuation and thus 
survivability for this area. However, a vertical evacuation structure built in this vicinity benefits a much 
broader area than would a retrofitted bridge, significantly increasing the survivability of the public 
throughout this area, especially those with limited mobility or the elderly.  

Although the speeds presented in Figure 4-1, Figure 4-2, and Figure 4-3 imply that people in much 
of the area could evacuate in time following a local Cascadia event, it is inevitable that after the earthquake 
other factors will contribute to slow or impede actual evacuation travel times. Accordingly, the public 
should maintain the overarching goal of immediately evacuating following the earthquake, and 
moving as rapidly as possible in order to ensure they reach safety with ample time to spare. The 
speeds presented in Figure 4-1, Figure 4-2, and Figure 4-3 should be viewed as minimum values such 
that faster travel remains the best approach for surviving such an event. 
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Figure 4-1. Final “Beat the Wave” map for the community of Nedonna Beach. 
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Figure 4-2. Final “Beat the Wave” map for the community of Rockaway Beach. 

 



Local Tsunami Evacuation Analysis of Rockaway Beach, Tillamook County, Oregon 

Oregon Department of Geology and Mineral Industries Open-File Report O-17-06 45 

Figure 4-3. Final “Beat the Wave” map for the communities of Twin Rocks and Barview. 
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5.0   DISCUSSION 

5.1   Key findings 

By depicting minimum speeds to reach safety from every part of a study area, the BTW approach to 
analyzing evacuation difficulty accomplishes in a single map what would take many maps using a single 
evacuation speed to estimate evacuation time (e.g., Wood and Schmidtlein, 2012). Unlike the single-speed 
approach, BTW analysis takes into account early tsunami arrivals at waterways and lowlands that can 
catch evacuees before reaching safety. Examination of the modeled tsunami wave front advance across 
the study area is thus a critical first step in identifying where the tsunami may arrive early along some 
routes relative to what would be expected for normal dry land inundation. Although there are several 
early wave arrivals in the greater Rockaway Beach area, they are minor and result in no impact to the 
modeled evacuation speeds (Figure 4-2).  

Because bridges over Lake Lytle and Crescent Lake outlets have not been retrofitted to withstand an 
~Mw 9.0 earthquake, it is possible that they will collapse during the shaking, effectively cutting off 
evacuation to the high school in the north and along NE 12th Avenue to the east (Figure 3-7B). This loss 
critically impacts residents living on and adjacent to Highway 101 between Lake Boulevard and North 8th 
Street, such that their only way of escape is now to the south along North 6th Avenue. Our analyses 
demonstrate that the speeds required to successfully “beat the wave” in this area are on the order of 10–
12 fps (akin to a 7.3–8.8 min/mile pace), limiting evacuation success to only a few very fit adults. As a 
result, a portion of this population would not be able to reach safety in time and would be killed by the 
tsunami while evacuating.  

Mitigation techniques for addressing sites where evacuation speeds are too high include installing 
vertical evacuation structures and/or reinforcing those bridges expected from engineering analysis to fail 
during a major earthquake. These techniques are especially important when accounting for the fact that 
most elderly are unable to sustain speeds of ~2–4 fps (Table 3-1) for very long (Wood and others, 2015). 

In addressing such challenges, we explored several options that target improvements in evacuation 
routes (e.g., the retrofitting of one or both bridges) or focus on construction of vertical evacuation 
structures. These analyses presuppose that any vertical evacuation structures have adequate capacity for 
the population served and are designed and constructed to remain intact and accessible after the 
earthquake shaking while also resisting tsunami forces and scour. With these assumptions in mind, our 
analyses demonstrate the benefits of building a vertical evacuation structure along Highway 101 near NW 
11th Street in Rockaway Beach. The establishment of such a structure would significantly decrease the 
public’s evacuation times and the minimum evacuation speeds (Figure 3-9C) to reach safety.  

In addition to consideration of vertical evacuation structures, retrofitting existing bridges remains 
another option for hardening evacuation routes. Our “with” and “without” model runs over these bridges 
serve to reinforce the importance of the bridges for evacuation throughout the area (Figure 3-7). Figure 
3-8A and Figure 3-8B highlight how hardening just one of the two bridges could have a significant impact 
on reducing evacuation difficulty and hence the required minimum travel speeds needed to reach safety. 
Of the two scenarios, our analyses suggest that at a minimum, hardening the NE 12th Avenue bridge would 
produce the best response, yielding the lowest required travel speeds in the area. Although the areas 
benefitting from retrofitting bridges to withstand such a large earthquake may be smaller than the area 
impacted by a vertical evacuation structure, the required height of such a structure in Rockaway Beach 
would pose a significant challenge with respect to land use planning objectives (e.g., viewsheds) and cost.  
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Although landslide and slope stability analyses were not performed for this study, “what if” analyses 
assuming worst case slope failures are valuable for identifying the severity of their potential effect on 
evacuation (Wood and others, 2016). Our results show that, if landslides do obstruct evacuation, such 
slides may play a pivotal role in preventing people from reaching safety in certain parts of the community, 
most notably Nedonna Beach and to a lesser extent Rockaway Beach adjacent to the Pacific View 
neighborhood. We suggest that slope stability analyses and related mitigation recommendations be 
considered to guide decision makers. 

These results demonstrate the power and utility of the least-cost distance and BTW modeling 
approaches for examining and refining the locations of hypothetical mitigation techniques. In contrast, 
the Wood and Schmidtlein (2012) single-speed approach is really aimed at answering a simple question: 
which parts of a community can and cannot be evacuated at a single nominal walking speed for 
unimpaired adults such as 4 fps? The BTW map answers that question definitively by binning output into 
multiple speeds which can be directly correlated to maximum walking speeds of particular populations 
(e.g., an unimpaired adult walking at 4 fps can evacuate from all yellow and light orange areas but cannot 
evacuate from dark orange, pink, purple and blue areas). 

Regardless of mitigation considerations, wayfinding through adequately spaced signage, battery 
operated lighting, and other means is essential to survival. Even in areas where safety is nearby and all 
populations appear likely to survive, confusion about where to go will make the difference between life 
and death. Although Rockaway Beach is relatively “simple” in its topography (the tsunami advances from 
the west, safety lies to the east and is generally visible from a distance), it can still be tricky to reach high 
ground. Much of town is separated from safety by low-lying marsh terrain and not all east-west roads 
extend all the way to the safety. Clear and visible signage placed in key locations is extremely important, 
especially for areas likely to experience large numbers of visitors such as Manhattan Beach State Park, 
downtown Rockaway Beach, and Barview Jetty County Park.  

5.2   Uncertainties and potential improvements 

BTW modeling for this study relied on a skilled analyst to examine wave front advance data to determine 
where evacuation routes might be compromised by early tsunami arrivals (i.e., establishment of 
intermediate critical points). An algorithm for placing intermediate critical points would eliminate human 
error. Likewise, the current BTW method has no algorithm that integrates the tsunami wave front arrival 
times as a cost in the LCD analysis. For example, the flow zone boundaries are established strictly on the 
basis of minimum distance to safety without regard to tsunami wave arrivals. If there were a quantitative 
way to assign costs to wave arrivals along every potential path, both minimum distance and least 
likelihood of being caught by the tsunami would influence location of flow zone boundaries. This issue 
became apparent while modeling evacuation of Clatsop Spit (Gabel and Allan, 2016) where BTW results 
for a hypothetical vertical evacuation structure initially yielded a flow zone boundary resulting in some 
people evacuating to the structure instead of high ground even though high ground could be reached at a 
slower speed. If every potential path considered both distance and time, those kinds of inconsistencies 
could be removed. Because there were no significant early wave arrival issues in Rockaway (Figure 4-2), 
this issue can be effectively ignored for this area. 

Existing modeling of BTW speeds is limited to paths from the back shore to roads and trails, but 
starting at points between roads and trails will take longer than from points on roads and trails, so nearest 
BTW speeds will slightly underestimate or overestimate speed for evacuees starting between roads and 
trails. In the greater Rockaway Beach area, distance to a road is generally less than or equal to about half 
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the separation between city streets (approximately 100 ft or 30 m), which creates a 4% error for the 
western parts of town that are approximately 0.5 mile (0.8 km) from safety. For evacuees that may have 
high ground nearby but require travel over natural areas, then BTW speeds may be overestimated by 
constraining evacuees to roads. These sources of error could be eliminated by running the model for all 
areas between streets and trails. However, such an approach would complicate the identification of 
evacuation arrows and pathways by requiring more detailed land cover mapping (e.g., fences) and 
possibly resulting in pathways that run through private property.  

Future BTW mapping could also focus on better characterization of the evacuation landscape after the 
initial earthquake. Required evacuation speeds are likely to be increased above model values by ground 
failures such as earthquake-induced liquefaction, lateral spreading, and landslides or development of 
sinkholes from broken water mains. Although there remain many uncertainties about the public’s ability 
to travel over such earthquake-disrupted terrain, these types of first-order analyses remain valuable from 
the standpoint of simply identifying potential obstacles that could compromise rapid and safe evacuation 
(Wood and others, 2016). In addition, downed power lines that may or may not be live as well as debris 
on roads are likely to slow or impede evacuation travel. Lowland areas are on Holocene sand and silt, 
which are variably prone to liquefaction and lateral spreading (Madin and Wang, 1999). This is especially 
the case in the Rockaway area because of the close proximity of the water tables throughout this area, 
which is conducive to causing liquefaction. We did not include cost factors for these hazards in the LCD 
analysis because of the highly site specific nature of the hazards and high uncertainty of their effect on 
evacuation speed. Recognition and mitigation of these hazards on key evacuation routes would be a useful 
means of decreasing this source of uncertainty in the evacuation modeling 

The BTW approach provides minimum speeds to safety for routes defined by the LCD approach but 
does not directly evaluate whether those speeds can be maintained along an entire route, for example in 
sand and up steep hills. One approach for dealing with this might be to incorporate into the BTW results 
additional safety factors that increase speeds to account for the length of path in difficult terrain. 
Furthermore, the existing BTW modeling does not account for human characteristics (age, gender, 
physical disabilities, etc.) that may be present in a local population. Thus, more refined modeling could be 
directed toward better evaluation of such social characteristics. 

Research devoted to better understanding evacuee behavior is another area for future work. In our 
case study, 10 minutes is subtracted from the actual tsunami wave arrivals to account for delay of 
evacuation from earthquake shaking and behavioral factors, but this assumption is highly uncertain. The 
origin time for the tsunami wave arrival time data is the beginning of slip on the CSZ megathrust fault. 
Once slip begins, there is a variable but potentially significant amount of time required for the natural 
evacuation signal to arrive in the form of strong shaking. Departure will be additionally delayed by the 
shaking itself. In the magnitude 9.0 March 11, 2011, Tohoku earthquake, strong shaking lasted about 3–5 
minutes (USGS, 2012), and, while coseismic slip on this earthquake was similar to that assumed for the 
XXL1 scenario (Witter and others, 2011), fault rupture width was larger and length shorter than estimated 
for a Cascadia event. There are few empirical data on how long it takes people to begin evacuation, but it 
is reasonable to assume that walking would be difficult during the 3–5 minutes of strong shaking, and 
hence there is some uncertainty about the time needed to start evacuation after the shaking. The mean of 
7 minutes found in the surveys of Mas and others (2013) in La Punta, Peru, remains untested, as it is not 
based on data collected immediately following an event. This source of uncertainty could be decreased by 
systematic collection of behavioral data from modern local tsunami events and promotion of quick, 
instinctive evacuation through ongoing education programs with a focus on regular community-wide 
evacuation drills (e.g., Connor, 2005). 
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6.0   CONCLUSIONS AND RECOMMENDATIONS 

The investigation accomplished the primary objective: to provide a quantitative assessment of evacuation 
difficulty in the greater Rockaway Beach area, including the communities of Nedonna Beach, Rockaway, 
Twin Rocks, and Barview. The investigation implemented the “Beat-the-Wave” (BTW) approach to 
evacuation analysis developed by Priest and others (2015a, b), with a major refinement in that we can 
now account for variable speeds along a route due to differences in the route characteristics (e.g., flat vs. 
steep, sand vs. paved). As a result, the BTW approach accomplishes in a single map what would require 
multiple maps in other approaches such as that of Wood and Schmidtlein (2012). In contrast, the simpler 
single-evacuation-speed approach of Wood and Schmidtlein (2012) is more practical for regional 
analyses. 

The results of this study demonstrate that evacuation of much of the greater Rockaway Beach area in 
response to a maximum considered XXL1 tsunami is attainable with one notable exception. The exception 
is Highway 101 and corresponding side streets between Lake Boulevard and North 8th Street (the area 
west of Crescent Lake and Lake Lytle) where bridges are expected to fail during the earthquake, 
potentially eliminating two key evacuation routes. Without suitable mitigation efforts directed at 
reinforcing at least one of the bridges, we anticipate some potential loss of life because the time required 
to “beat the wave” to safety in this area is too long relative to the arrival time of the tsunami. Of the two 
bridge scenarios examined in this study, where modeling maintains one route while eliminating the other 
due to expected bridge failure, we recommend further evaluation of at least the NE 12th Avenue bridge. 
This is because our BTW model results strongly point to this site providing the best gains with respect to 
reducing the evacuation speeds required to reach safety. If this option is not achievable, than retrofitting 
the Highway 101 bridge remains a viable option, though the gains in improved evacuation speeds were 
found to be slightly less than would be gained by strengthening the 12 Avenue bridge. 

Of additional concern is the risk of landslide activity that could potentially block access to several of 
the safety destinations in the Rockaway Beach and Nedonna Beach areas. However, due to uncertainty in 
how the landscape might respond during a major earthquake, we cannot say for certain where and 
whether earthquake-induced landslides will affect established evacuation routes. Instead, we can offer 
general guidance based on the assumption that previously mapped slide locations could fail and block 
evacuation. To that end, our analyses have shown that consideration of earthquake-induced landslides is 
important in a few discrete areas; in these areas landslides potentially pose a significant barrier to safe 
evacuation, and care should be taken to plan accordingly for such a hazard.  

To address evacuation difficulties identified in a few areas in the Rockaway Beach area, a vertical 
evacuation structure remains another viable option, especially as a refuge for those with limited mobility. 
Such a structure could consist of a large berm, tower, or commercial building. However, this option would 
need to be carefully weighed (cost/benefit) against options such as hardening bridges. A large enough 
structure (e.g., a berm or building) capable of holding the estimated number of people in the relevant 
evacuation flow zone would need to be built to a sufficient height. A structure would need to exceed an 
elevation of ~19 m (64 ft), and exceed ~14 m (46 ft) above the ground surface in order to provide 
protection against the maximum considered XXL scenario. We recommend further evaluation in order to 
assess the cost/benefits of each of these options. 
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9.0   APPENDICES 

• Appendix A: Detailed evacuation routes for Nedonna Beach 
• Appendix B: Detailed evacuation routes for Rockaway Beach 
• Appendix C: Detailed evacuation routes for Twin Rocks and Barview 
• Appendix D: Illustration of XXL1 tsunami maximum flow depths for the greater Rockaway 

Beach area 
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9.1   Appendix A: Detailed evacuation routes for Nedonna Beach 

Figure 9-1. Least cost (path) distance modeling for the community of Nedonna Beach showing 
evacuation flow zones and detailed evacuation routes for the scenario assuming all non-retrofitted 
bridges fail during the earthquake and are unavailable for evacuation. 
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9.2   Appendix B: Detailed evacuation routes for Rockaway Beach 

Figure 9-2. Least cost (path) distance modeling for the community of Rockaway Beach showing 
evacuation flow zones and detailed evacuation routes for the scenario assuming all non-retrofitted 
bridges fail during the earthquake and are unavailable for evacuation. 
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9.3   Appendix C: Detailed evacuation routes for Twin Rocks and Barview 

Figure 9-3. Least cost (path) distance modeling for the communities of Twin Rocks and Barview showing 
evacuation flow zones and detailed evacuation routes for the scenario assuming the existing road and 
trail network remains intact. 
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9.4   Appendix D: Illustration of XXL1 tsunami maximum flow depths for the 
greater Rockaway Beach area 

Figure 9-4. Illustration of XXL1 maximum flow depths (in feet) after a Cascadia subduction zone 
earthquake in the greater Rockaway Beach area; A) Nedonna Beach, B) Rockaway Beach, and C) Twin 
Rocks/Barview. D) Boxed areas show the relative locations of the community maps. 
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