STATE OF ORECON

DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES

OPEN-FILE REPORT 0-77-3

HEAT FLOW STUDY OF THE BROTHERS FAULT ZONE, ORECON

1977

Donald A. Hull, David D. Blackwell, Richard G. Bowen, and Norman V. Peterson

CONTENTS

ABSTRACT	iii
INTRODUCTION	1
Purpose Scope Definition of terms Acknowledgements Related studies	1 1 3 4 5
LOCATION	6
GEOLOGY	7
METHODS	10
Drilling Geothermal gradient Thermal Conductivity	10 13 13
HEAT FLOW	15
Newberry volcano area Frederick Butte area Glass Buttes area Wagontire - Riley Junction area Harney Basin area Black Mountain area Sucker Creek area	19 21 23 23 25 29 31
DISCUSSION	32
REFERENCES	40
APPENDICES	

Appendix	A	-	Geothermal	gradient	tables
Appendix	В	-	Geothermal	gradient	graphs

ILLUSTRATIONS

Figure 1.	Index map	2
2.	Brothers fault zone, Oregon	16
3.	Heat flow hole, Black Mountain, Morrow County, Oregon	30
4.	Heat flow holes, Sucker Creek, Harney County, Oregon	30

TABLES

Table	1.	Geothermal data from Brothers fault zone, Oregon	following	16
	2.	Geothermal gradient calculations and geochemical temperatures for		36
		wells in Harney Basin		

ABSTRACT

During 1975 and 1976 38 holes were drilled in central and eastern Oregon to obtain data for calculation of heat flow along the Brothers fault zone and a possible eastward extension of the zone. The holes were drilled to variable depths with the majority of holes in the depth range of 60-150 m. (197-492 ft.). Geothermal gradients and estimated heat flow values were also obtained from 15 water wells and mineral exploration holes.

Heat flow is variable along the zone and many of the values appear to be influenced by ground water movement. Most of the heat flow values in the fault zone between Pine Mountain on the west and Riley Junction on the east are 1.9 HFU or greater whereas values north of the zone are approximately 1.6 HFU. The systematic decrease in the age of silicic volcanism from east to west along the fault zone as defined by MacLeod and others (1976) is not reflected by a systematic variation in heat flow values. Anomalously high heat flow at Glass Buttes and at several localities in and west of Harney Basin outlines a broad area, parallel to the fault zone, which deserves further study. At Glass Buttes high heat flow coincides with an area of intensive hydrothermal alteration and low electrical resistivity and these features collectively define a promising exploration target.

Heat flow values of 1.7 - 2.0 HFU in three holes along the eastern border of Oregon limit the western extent of the Battle Mountain heat flow high as defined by previous workers (Sass and others, 1976A).

iii

INTRODUCTION

Purpose

The purpose of the research described herein was to measure crustal heat flow along and across the Brothers fault zone, a major regional geologic lineament which crosses central Oregon (figure 1). Previous work had shown that the zone contained a geologic environment favorable for the occurrence of geothermal energy (Walker, 1974 and Groh, 1966). Measurement of heat flow was adjudged to be the most direct and appropriate technique for evaluating the geothermal potential of the study area.

Scope

The study consisted of the drilling of 38 holes, measurement of geothermal gradients (the increase in temperature with depth) in the holes, subsequent laboratory measurement of thermal conductivity on rock samples from the holes and finally calculation of heat flow which is the product of the gradient and thermal conductivity values. Holes were initially drilled in 1975 in a variety of rock types along profiles oriented perpendicular to the west-northwest trend of the Brothers fault zone. The 1975 holes were located in the zone and near the north and south margins of the zone as defined by regional geologic mapping (Walker and others, 1967 and Greene and others, 1972). In 1976 holes were

Figure 1 - Index Map

drilled in and near silicic volcanic centers at the west end of the zone, across a possible eastern projection of the zone and in older rocks north of the zone to provide regional background data.

Definition of terms

Metric units are used throughout the report and English units are included in parentheses for convenience where appropriate.

Heat flow is used throughout this report to mean crustal heat flow as measured in shallow holes, and we have made no calculations of reduced heat flow. Heat flow data are presented in heat flow units (HFU) of microcalories /cm.² sec. Geothermal gradients are measured in degrees Celsius per kilometer of depth and thermal conductivity is expressed in millicalories /cm. sec. ^oC.

Drill hole numbers express hole location by township, range and section in a manner similar to established practice of the U.S. Geological Survey for water wells. The refinement of location within a section is based on a quadrant subdivision of A, B, C, or D for the northeast, northwest, southwest or southeast $\frac{1}{4}$ or $\frac{1}{4} - \frac{1}{4}$ section. Thus a hole in the northwest $\frac{1}{4}$ of the southwest $\frac{1}{4}$ of section 10, township 9 south, range 14 east is numbered 9S/14E - 10 CB. The first letter after the section number represents the $\frac{1}{4}$ section and the second letter designates the $\frac{1}{4}$ - $\frac{1}{4}$ section. Due to the lack of detailed topographic maps in portions of the study area it was not possible to refine some of the hole locations to $\frac{1}{4}$ - $\frac{1}{4}$ section and for these hole numbers the second letter is not

given. Township and range designations refer to the Willamette base line and meridian respectively.

Acknowledgements

The success of the project is due to a number of individuals. Edward E. Widman, William Hoffstetter and Gerald L. Black assisted with the drilling and logging of the holes. Chu Jiaw, John Steele and Charles Brott measured the thermal conductivity values. John H. Sass of the U.S. Geological Survey provided helpful suggestions and technical guidance during the course of the study. The drilling was performed under contract by Larry Burd Well Drilling Company of Pendleton, Oregon and Boyles Brothers Drilling Company of Reno, Nevada; both firms did an excellent job. The majority of the holes were drilled on Federal lands and we received outstanding cooperation from officials of both the U.S. Bureau of Land Management and the U.S. Forest Service. The project benefited from the stimulating discussions of geology with Norman S. MacLeod of the U.S. Geological Survey, Lawrence A. Chitwood and Edward A. Groh of Bend, Robert J. Pulfrey of Burns, Jack Roberts of Vale, Chris Broili of Lakeview and Rodney D. Wimer of Portland. Leonard Wilkerson of the Department of State Lands was helpful in our work on state lands.

Several members of the Department of Geology and Mineral Industries assisted with various phases of the project and we are especially grateful to R.E. Corcoran, former State Geologist, and Vernon C. Newton, Jr. for their help. The study was funded by geothermal research grant number 14-08-0001-G-200 from the U.S. Geological Survey.

Related Studies

The heat flow study of the Brothers fault zone is a segment of a continuing state-wide heat flow investigation. The Department of Geology and Mineral Industries recently completed a companion study in the Western Cascade Range and the U.S. Geological Survey recently published the results of their heat flow work in an area in southern Oregon which lies south of the Brothers fault zone (Sass, J.H., and others, 1976B).

The preliminary results of our work in 1975 were described by Bowen and others (1976). A heat flow study of the western Snake River Plain, which adjoins the area investigated in this report, is described by Brott and others (1977).

LOCATION

The Brothers fault zone (figure 1) crosses central Oregon and lies between the Cascade Range on the west and Steens Mountain on the east. The majority of the heat flow holes drilled as part of this study lie between the city of Bend on the west and Harney Basin near the city of Burns on the east (figure 2). Additional holes were drilled in the Blue Mountains in northeastern Oregon (figure 3) and near the eastern border of the state between the towns of Adrian and Jordan Valley (figure 4). The study area encompasses portions of Crook, Deschutes, Harney, Lake, Malheur and Morrow Counties.

GEDLOGY

The Brothers fault zone is a major structural lineament which forms the northern boundary of the Basin and Range geologic province across much of central Oregon (Lawrence, 1976). Recent work by Stewart and others (1975) demonstrated that the Brothers fault zone is colinear with, and possibly a northwestern portion of a structural zone termed the Oregon-Nevada lineament which extends as far southeast as central Nevada.

The Brothers fault zone is considered to be a zone of rightlateral tear faulting (Lawrence, 1976). Peterson and others (1976) describe the zone as a belt of closely spaced en-echelon normal faults. Walker (1969) notes that "The normal faults of the zone and the many volcanic vents along the zone represent only the surface manifestation of deformation, the exact nature of which is not known. The pattern of normal faults within and near the Brothers fault zone and the relation of many small monoclinal folds to the fault suggest, however, that the zone overlines a deeply buried fault with lateral displacement; the normal faults denote only adjustment of surface and near-surface volcanic and tuffaceous sedimentary rocks."

The time of onset of tectonic activity along the Brothers fault zone is not accurately known. The individual faults along the zone have displaced all the rocks in the area except the latest Pleistocene lavas and a slickensided and obviously young fault plane along the

zone is exposed near Hampton Butte (Peterson and others, 1976), however, the zone does not appear to be seismically active at the present time. A summary of earthquakes in Oregon between 1841 and 1970 showed only a single event along the Brothers fault zone, an intensity III earthquake near Bend in 1943 (Couch and Lowell, 1971).

The Brothers fault zone lies in the High Lava Plains physiographic province. The zone traverses an interlayered sequence of volcanic and sedimentary rocks ranging in age from Miocene to Holocene. The volcanic rocks at the surface are predominantly basalt flows and rhyolitic ash-flow tuffs with scattered rhyolite and rhyodacite domes. The sedimentary rocks are poorly indurated tuffaceous sandstone, siltstone and claystone of fluviatile and lacustrine origin. Regional geologic maps by Walker and others (1967) and Greene and others (1972) cover the eastern and western portions of the fault zone respectively.

The rhyolite and rhyodacite domes along the Brothers fault zone and a broad area to the south, show a general progressive decrease in age from Harney Basin westward to the Cascade Range (MacLeod and others, 1976) although silicic complexes at Pine Mountain near the west end of the area with an age of 21 million years (MacLeod, oral communication, March, 1977) and Iron Mountain near the east end of the area with an age of 2.7 million years are exceptions to this pattern (Parker, 1974). The basalt flows do not show any systematic age progression and Holocene to Pliocene flows and cinder cones are found intermittently along the zone from the Cascade Range to Diamond Craters in Harney Basin. The trend of centers of young basalt volcanism continues east from Diamond Craters to Jordan Craters near the town of Jordan Valley, Oregon whereas the structural lineament extends southeast from Harney Basin at least as far as the major fault bounding the east side of Steens Mountain.

The hydrology along the western portion of the Brothers fault zone is poorly understood as there are few water wells in the area. A compilation of available data from the Newberry volcano area indicated that the static water level is 120 - 600 m. (400 - 1968 ft.) below the surface and that the Brothers fault zone may have a controlling effect on the ground water levels in the area (C. Wassinger, written communication, February, 1977). The movement of ground water appears to be north from the vicinity of Fort Rock and Newberry volcano towards the city of Bend and northwest from the towns of Brothers and Millican also towards Bend. The static water level becomes shallower along the eastern portion of the Brothers fault zone and in Harney Basin it lies at depths generally less than 30 m. (98 ft.). Perched ground water apparently is common in the vicinity of the fault zone. Ground water studies which cover portions of the Brothers fault zone include those by Trauger (1950) who compiled data for Lake County, and Piper and others (1939) and Leonard (1970) who studied ground water in Harney Basin.

The heat flow holes drilled west of longitude 120° W did not penetrate the static water level whereas many of the holes to the east were drilled in part below this level.

METHODS

Drilling

During the heat flow study holes were drilled to variable depths ranging from 17.5m. (57 ft.) to 248 m. (815 ft.) with truck mounted rotary drills. The drills used for various phases of the work were an Ingersoll Rand model T4 and a Failing model CF 1500. A variety of drilling techniques were used including down-hole air hammer, air rotary and diamond coring. Most of the footage was drilled with the down-hole hammer and coring was confined to selected intervals and constituted about two percent of the total footage.

Holes were drilled in a variety of rock types with variable success. Basalt flows are the predominant rock type at the surface in the study area, and they present especial problems for heat flow drilling because they are ground-water aquifers and moving groundwater at depth may distort conductive heat flow patterns. In addition the basalt flows in the vincinity of the Brothers fault zone are generally only a few meters to a few tens of meters thick and unconsolidated or poorly consolidated sediments and cinders are commonly interlayered with the flows, resulting in caving of the drill holes. The relatively thin basalt flows are characterized by marked variations in porosity which results in significant variations in thermal conductivity values within a given drilled section.

The widespread silicic welded ash-flow tuff sheets offer good drilling conditions but their maximum thickness in the study area is approximately 76 m. (250 ft.) and temperature gradients measured in the welded tuffs cannot reliably be projected to any great depth. Also unconsolidated pumice and/or sediments at the contacts of the tuffs tend to cave.

The rhyolite and rhyodacite domes present relatively good drilling conditions but their resistance to erosion and, in some cases, their relatively young age result in marked topographic relief which limits access for drilling and necessitates topographic correction of the geothermal gradient data. These silicic domes are widely and irregularly spaced and appear to be "mushroom" shaped. Some of the drill holes collared on the flanks of the domes passed out of the silicic rocks at shallow depths.

Three holes were drilled in late 1976 along Sucker Creek in Malheur County in a predominantly sedimentary section in the Sucker Creek Formation of Miocene age. This unit offers good drilling conditions except for interlayered thin basalt flows which act as aquifers and require grouting. A single hole was drilled in trondjemite of Mesozoic age in Morrow County and this lithology presented no problem.

The direct drilling cost in individual holes varied from \$5.77/m. (\$1.76/ft.) to \$89.43/m. (\$27.76/ft.). A total of 2670 m. (8,762 ft.) of hole was drilled during the course of the project at a total direct cost of \$50,045, ie., an average cost per meter of \$18.73 (or \$5.71/ft.).

The relatively shallow holes drilled in 1975 to a depth of 61 m. (200 ft.) or less had a mean cost of \$13.22/m. (\$4.03/ft.) whereas the drilling in 1976 to a target depth of 152 m. (500 ft.) resulted in a cost of \$23.56/m. (\$7.18/ft.).

Penetration rates for individual holes varied considerably. The various volcanic and sedimentary units along the Brothers fault were drilled with the down-hole air hammer at rates of 10-20 m./hour (33-66 ft./hour). Caving zones and coring slowed progress considerably but individual holes were generally completed in one or two days. The trondjemite at Black Mountain was drilled with the downhole air hammer at an average penetration rate of 7.5m./hr. (24.5 ft./hr.).

Geothermal gradient

Temperatures were measured at depth intervals of $2\frac{1}{2}$ or 5 m. (8.2 or 16.4 ft.) using a previously calibrated thermistor (temperature dependent electrical resistance element) probe. A detailed description of the instrumentation is given by Roy and others (1968). The thermistor element has a temperature precision of 0.005°C although the precision of repeated temperature measurements at a particular depth in a hole is approximately 0.05° C due to the difficulty in repositioning the probe at the same depth. The temperature gradients tabulated herein are calculated by fitting a least squares straight line to the data.

The time required for temperatures to reach equilibrium in a hole after drilling is exceedingly variable and ranges from a few days to a few months. The time varies depending upon drilling method, drilling medium (air versus water), lithology, permeability of the host rock, groundwater conditions and the nature of the material used to backfill the hole (cement versus drill cuttings versus drill mud).

Thermal conductivity

During drilling samples of cuttings were taken at intervals of 6.1 or 12.2 m. (20 or 40 ft.) for subsequent laboratory measurement of thermal conductivity. Intermittent core samples were taken to check the conductivity values measured on the cuttings and to provide more accurate values for rocks of variable porosity. Conductivity measurements were also made on outcrop samples of basalt and rhyolite. The divided bar method of measuring thermal conductivity was used on cuttings as described by Sass and others (1971B).

Due to the lack of knowledge of the average porosity for most of the lithogic units encountered in drilling, the measured thermal conductivity values for some holes are subject to uncertainties of as much as 20 percent. In order to reduce the uncertainty in conductivity values, continuous cores are needed, however core drilling would increase the unit cost of drilling and decrease the total amount of drilling by a factor of 2-4 times. The tradeoff between data quality and data quantity is a moot point. In the present study it was decided that the overall goals of the project would be best attained by maximizing the number of holes st some sacrifice in the quality of the conductivity measurements.

HEAT FLOW

Heat flow data from 68 drill holes are listed in table 1 and the hole sites are shown on figures 2, 3 and 4. Included in table 1 and figure 2 are data from 15 holes previously reported by Bowen and others (1975), Sass and others (1976B) and Sass and Munroe (1973). Thirtyeight of the new heat flow measurements are from holes drilled specifically for heat flow information; 34 of these holes are in central Oregon (figure 2), 3 are in eastern Oregon (figure 4) and 1 is in northeastern Oregon (figure 3). The remainder of the new values are from water wells and mineral exploration holes.

The information from the various holes in table 1 are listed by township from north to south and for a particular township the holes are ordered by range from west to east. The heat flow values for central Oregon are discussed first and the remainder of the data are reviewed at the end of this section.

Twenty-five of the heat flow holes in central Oregon were drilled in the summer of 1975 and 9 were drilled in 1976. The objective of the drilling in 1975 was to utilize shallow wells so that a broad area and a variety of rock types could be tested as inexpensively as possible. A nominal drill hole depth of 61 m. (200 ft.) was selected because of the relatively high geothermal gradients noted in previous studies (Bowen and others, 1975) and the low thermal conductivity anticipated for the various rock units in the area. Because of the scarcity of previous drilling in the study area, little subsurface geologic and hydrologic information were available prior to drilling except for the

Ч

TABLE 1 - GEOTHERMAL DATA FROM BROTHERS FAULT ZONE, OREGON

- 1/ N represents the number of samples of drill cores or cuttings on which thermal conductivity determinations were made. Values in millicalories/cm. sec. °C.
- 2/ Values in parentheses are terrain corrected.
- 3/ The variable quality of the heat flow values is shown by an alphabetical symbol ranging from "A" (best) to "D" (poorest). The hole or section of hole marked by a Dl is affected by regional water flow, D2 by intra-bore hole water flow, D3 by possible lateral surface temperature variations, and D4 by an unknown disturbance.
- 4/ Values in parentheses are estimates based on lithology.
- 5/ Symbols in parentheses represent geologic map units of Walker and others (1967) and Greene and others (1972).
- 6/ Reported by Bowen (1975).
- 7/ Reported by Bowen and others (1977).
- 8/ Reported by Sass and others, (1976B), number in parentheses is well number used by author.
- 9/ Reported by Sass and Munroe (1973).
- 10/ Gradient values of lower reliability are enclosed in parentheses

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters	Condu	ermal uctivity In-situ	Gradient °C/km	Heat flow Qu	uality	Lithology
45/28E-21DB	45°12.3'	1190,20.1	1219	55-125	13	7.3	36 .3 ± 0.6	2.6(1.9)) ² / _A 3/	Trondjemite
185/11E-25BD	43°59.41	121 ⁰ 21.4'	1195	30-105 105-130			<u>10/</u> (34.5) 3.2 (-54.0) 68.4		DJ. DJ.	Basalt Basalt
185/12E-5BC	44°02.81	121°19.1'	1102	10-230			(2.6) 2.9		D1	Basalt
185/45E-21CB	43°59.21	117 [°] 13.3'	678	15 - 310		(2.8)	145.5 6.1	4.1	B	Siltstone, sandstone, basalt
198/11E-25BA	43 [°] 54•4'	121 ⁰ 21.5'	1373	23 -93 93 - 123			(5.3) 9.1 (38.3) 12.0		D4 C	Basalt (?)
195/16E-16DC	43 [°] 54•9'	120 ⁰ 49 . 1'	1376	25-300		(3.6)4/	51.1 8.1	1,8	В	Basalt (Tob) ^{5/}
20S/14E/25AA	43°48.81	120 ⁰ 59.4'	1428	20 - 45 45 - 125	2 4	4•4 4•4	52.0 5.2 34.4 1.0	<2.3 <1.5	D4 C	Rhyolite & pumice (QTsv) Rhyolite
205/21E-7BA	43°51.4'	120°15.3'	1460	12.5-57.5	6	3.5	52.9 3.1	1.85	В	Basalt or andesite (Ta)

Table 1. Geothermal data from Brothers fault zone, Oregon

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Moters	Thermal Conductivity N ¹ In-situ		Heat (Flow	Quality	Lithology
215/11E-25BB	43°43.9'	121°21.7'	1515	10-27.5 27.5-35	2 3.6	30.7 ± 3.5 65.3 4.3	2.4	D <i>l</i> + C	Obsidian and cinders Rhyolite
218/155-16AB	43 ⁰ 45.21	120 ⁰ 56.21	1.476	20 - 70 70 - 150	5 4.4 6 4.2		1.4 2.3	D3? C	Rhyolite, pumice & lithic tuff (QTsv)
218/17E-1AD	43 [°] 47.01	120 ⁰ 36.9'	1440	15-40 40-90	2 (1.7) 4 (2.4)	82.5 3.1 2	1.9 2.0 2.0	В	Rhyolite & rhyodacite (QT:
215/19E-12D	43°45.91	120 [°] 22.91	1380	10-20 20-30 30-40 40-47.5 47.5-60	1 (2.4) 1 (4.6) (2.4) 2 (1.6) 1 (2.2)	84.5 10.5 42.5 3.4 88.0 8.4 128.0 12.2 88.4 8.8 Best value	2.0 2.0 2.1 2.1 1.9 2.0	B	Rhyolite Basalt Sediments Pumiceous tuff Rhyolite tuff
215/23E-26C	43°42.81	119 ⁰ 55.81	1340	12.5-60	3 3.6	42.4 1.2	1.5	В	Basalt (Tob)
225/14E-3AC	43°41.9'	121 [°] 02.3'	1580	15-75		4.0 l.4		Dl	Obsidian & scoria
228/15E-35AD	43°37.61	120°52.6'	1660	20-40		20.5 6.8		Dl	Obsidian (QTsv), scoria & cinders

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters		nermal luctivity In-situ	Gradient °C/km	Heat Flow	Quality	Lithology	
225/19E-500	43°41.4'	120 ⁰ 28.71	1450	10-27.5 27.5-35 35-37.5	3 1 1	(2.4) (4.6) (2.4)	75.7±5.6 49.3 84.0 Best value	1.84 2.25 1.98 2.0	B	Basalt (QTb)	
225/19E-32AD	43 [°] 37.6'	120 ⁰ 27.4'	1520	10-15 15-37.5 37.5-42.5 42.5-47.5	1 2 1 1	(2.4) (4.6) (2.4) (1.6)	96. 39.6 1.9 66. 118 Best value	2.33 1.81 1.56 <u>1.94</u> 1.9	B:	Basalt (QTb) Rhyodacite " Pumice	
225/21E-9(?)-	5/			20 - 40		-	51.5	-			
225/23E-14CB	43°39.61	119 ⁰ 56.2	1290	12.5-17.5	4	2.4	61	1.5	D	Sandstone, siltstone ((Tst
225/32E-3400	43°36.9'	118 52.61	1260	0-95		(2.3)	(140)	3.2	С	Claystone	
235/19E-5B	43 ⁰ 37.01	120 ⁰ 28.41	1550	10-25 25-40 40-45 45-55 55-70 70-150	1 2 1 1 1	(2.4) (4.6) (2.4) (1.6) (2.2) (3.9)	73.3 5.0 44.0 6.0 82 121 95.3 7.6 50.9 1.2 Best value	1.78 2.01 1.94 1.98 2.07 <u>1.99</u> 2.0	А	Basalt (Qtb) Rhyodacite " Pumice Rhyodacite Welded tuff	

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters	Cor	Thermal nductivity / In-situ	Gradient °C/km	Heat Flow	Quality	Lithology
23S/23E-180	43°34•3'	120 ⁰ 00.6'	1460	10-27.5 27.5-35 35-62.5	3 1 3	2.4 (1.6) 2.4	133.7±7.6 185.3 18.2 133.1 1.9 Best Value	3.2 3.0 <u>3.2</u> 3.1	A	Tuffaceous sediments (Tst Pumice Obsidian
235/23E-27I	43 [°] 32 . 3'	119 ⁰ 56.8'	14,50	40 - 200 200-220		> 2 . 3	203.4 2.3 43.2 1.3	>4.6	B D2	Rhyolite and obsidian
23 S/26E- 25AB	43 [°] 33.2'	119°32.8'	1300	10-30 30-125			88 (33–76)		D1 D1	Alluvium (Qal)
235/27E-29BB	43°33.3'	119 ⁰ 31.0'	1300	10-115			(14-50)		Dl	Alluvian (Qal)
23S/28E-18D	43 [°] 34.8'	119 ⁰ 24.3'	1370	10-42.5 42.5-60	4 1	4.8 4.6	27.1 2.2 33.3 1.0 Best value	1.3 <u>1.5</u> 1.4	B	Welded tuff (Tdo) ""
235/46E-21BC	43 [°] 33 .5'	117 ⁰ 06.61	803	45 - 140	10	2.8	63.0 2.7	1.8	A	Claystone
245/22E-2DD	43°30.51	120 ⁰ 02.61	1460	15-60	4	2.4	120.2 2.2	2.9	B	Tuffaceous sandstone

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters	Cond	ermal luctivity In-situ	Gradient °C/km	Heat Flow	Quality	
24 5/ 22 E- 20AA	43°29 . 1'	120°05.81	1390	10-20 20-32.5 32.5-60	3 3	2.7 (1.6) 2.6	32.5±4.7 114.8 4.8 73.1 4.6 Best value		A	Alluvium (Qp) Pumice Tuffaceous sand & silt
245/25E -3 BD	43°31.1'	119°42.9'	1450	15-42.5 42.5-60	7	2.4		2 2.5	B. D2	Basalt & rhyolite "
245/26E-13DC	43 [°] 29.0'	119 ⁰ 32 . 61	1340	10-50 50-145	6 6	2.4 4.0	73.8 14. 47.2 2. Best value	.8 1.8 .7 1.8 e 1.8		Basalt & tuffaceous sed. Welded tuff (Tdo)
248/26E-24 AC	43 ⁰ 28.51	119 ⁰ 32.61	1340	5-37•5 37•5-45 45-60	4 1	1.6 2.4 4.2		.8 3.4 .1 3.1 .8 <u>3.5</u> e 3.3	В	Pumiceous tuff (Trr) Tuffaceous sediments Welded tuff (Tdo)
245/32 ¹ 2E-23DE	43 [°] 28.3'	118°43.9'	1256	75-150		(2.3)	60.9 7	.4 1.4	B	Claystone
245/33E-9D(S3	8) ^{8/} 43°301	118°39'	1255	40-203		2.1	82 <u>t</u> 1	1.7		_

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters	Thermal Conductivity NIn-situ	Gradient °C/km	Heat Flow	Quality	Lithology
245/33E-35AD	43°26.6	118°36.8'	1257	30-85	(2.3)	80.0±7.1	1.8	С	-
245/34E-190(S	2) ⁸ /43°28'	118 [°] 35'	1262	60-183	2.1	69.5 ±0.5	1.5		-
258/25E - 22B	43°23.5'	119 ⁰ 42.5'	1372	35-45		(50.0)			-
255 / 26E - 4CC	43°25.61	119 ⁰ 37.0'	1360	12.5-25	3 4.0	57.6 7.8	2.3	D	Basalt (QTb)
25S/31E-4BB	43°26.2'	119 ⁰ 01.1'	1262	42.5-60	5 3.1	30.9 2.5	1.0	D3	Tuff, claystone, sandstone (Tst)
255/31E-21D(S.	[₿] ∕ 43°221	1190021	1266	50-190	2.1	81 <u>†</u> 1	1.7		-
255/33E - 3BD	43°25.9'	118 ⁰ 38.5'	1274	10-28.6	2 2.4	188.3 18.9	4.5	В	Tuffaceous sediment (Ta
255/33E-11BB	43°25.2'	118 [°] 37 . 7'	1257	0-65	(2.3)	(60-70)	1.5	В	Sediments (Qs)

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters		nermal luctivity In-situ	Gradien °C/km	it Hea Flo	at Quality	r Lithology
255/46E-18AA	43°23.61	117°07.7	1127	10-150	10	3.3	52 . 5 ± 2	2.6 1.	7 A	Tuffaceous sandstone
265/243-24AD	43°18.3'	119 ⁰ 46.7'	1420	17.5-60	7	2,3	84.2 2	2.9 1.9	9 A	Tuffaceous sediments (Ta
26S/25E-20BB				17.5-22.5	2		20	0.8	3 D4	Sediments, cinders, basa
26S/30E-3BB	43°21.1'	119 [°] 07.0'	1273	7.5-30	8	2.4	47.6	1,:	L D3	Tuffaceous claystone (Ta
265/30E-19 (?) (V1)g/	43°17.9'	119 ⁰ 09 . 81	1250							
265/30E-20DB	43°17.7'	119 ⁰ 08.7'	1250	10-25	6	2.6	69.7 1	.8 1.8	3 C	Sand & gravel (Qs)
268/46E-28AB	43°16.6'	117 ⁰ 05.8'	1233	15-125	10	2.7	74.7 2	2.8 2.0	A C	Tuffaceous sandstone
275/29E-21AC	43°13.0'	119 ⁰ 14.8'	1400	12.5-45	13	3.9	54.2	2.	L B	Welded tuff (Tdo)
275/30E-13DD7/	43°13.21	118 [°] 56 . 3'	1273	25-60 60-130		(2.3) (3.1)		.4 1.9) (2.8) 9 (1.8)	Tuff, claystone, siltst

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters	Thermal Conductivity NL In-situ		Gradient °C/km	Heat Flow	Quali	ty Lithology
275/30E-19DC7/	43°12.61	11902.21	1250	46-108		(2.3)	131.3	3.0	В	Tuff, claystone, siltston
275/30E-21DDZ/	43°12.4'	118 ⁰ 59 .9 '	1289	10 -3 5 35 - 110	9 19	3.1 2.3	223.2±8.5 132.8 1.0	6.9 3.1	D A	"
275/30E-26DCZ/	43°11.5'	118°57.9	1340	10-57.2		(2.3)	117.9 1.4	2.7(3.	0) B	n
275/30E-27 AC-	43°11.91	118°59.31	1320	10 - 65 65 - 70		(2.3)	160.0 1.8 55.0 2.9	3.7	B D2	n .
275/30E-36BA ⁵ /	43°11.21	118057.01	1258	10-45	4	2.6	73.1 1.3	1.9	B	п
275/30E-36CC	43°10.6'	118°57.1'	1259	10-67.5	2	2.3	88.4 2.1	2.0	A	Tuffaceous setiments (Tst)
275/32E-23BB	43°13.0'	118°42.21	1330	30 - 95 95 - 140		(2.3)	52.8 74.4 2.1	l.7	B	
275/33E-33CB	43°10.81	118 ⁰ 39.6	1282	10-30			(-1.3) 4.3		Dl	Basalt (Qb)

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters	Th Cond <u>N</u> 1/	ermal uctivity In-situ	Gradient ^O C/km	Heat Flow	Quality	Lithology
28 S/ 24E-4BA	43°11.1'	119 [°] 53 . 3'	1510	10-30	2	3.9	51.3±6.3	2,0	C	Welded tuff (Tdo)
285/30E-13DA	43 [°] 08.21	118°56.3'	1265	20-25		(2.3)	82	1.9	С	Tuffaceous sediments (Tst)
285/32E-3600	43005.31	118°43.1'	1277	20-37.5 37.5-50	5	3.1	(39.4) 5.4 (2.4) 2.1	1.2	D2 D2	Basalt & sand Sand & c lay
295/31E-2B(MR	-27 43°051	118 ⁰ 51'	1260	57.9-62.5 89.3-92.0 60-100	4 4 8	2.37 2.19 2.28	65 + 2 83 ± 3 74.2 ± 0.8 Best value	1.54 1.82 <u>1.69</u> 1.7		-
295/32E-6 B(MR	-1) ⁸ /43°051	118 ⁰ 491	1262 oi	40-91 r 56.4-64.	4 4	2.19 2.19	96.0 0.6 89. 1 Best value	2.10 <u>1.95</u> 2.0		-
298/32E-34DC	43°00.1'	118 ⁰ 44.9'	1326	10 -25 25 - 52	4 3	3.9 2.6	84.0 5.1 140.2 7.7 Best value	3.3 <u>3.7</u> 3.5	В	Welded tuff (Tdv) Sediments

Location	North Latitude	West Longitude	Elev. Meters	Depth Interval Meters		ermal uctivity In-situ	Gradi C/k	.ent m	Heat Flow	Quality	Lithology
305/29E-15A(BLM)	42°581	119 ⁰ 151	1530	61-107		2.2	78	<u>†</u> 2	1.7		-
305/31E-23BC	42°57.21	118 ⁰ 51.3'	1277	15-30	4	2.2	50.0	15.5	1.1	D4	Tuffaceous sediments (Tts)
325/32E-16BA	42°48.3	118 ⁰ 57.6	1434	20-60	3	3.9	17.5	0.5	0.7	В	Basalt

Harney Basin. The relatively shallow hole depth was designed to develop data over a broad area although the extensive areal coverage desired required some sacrifice in data quality for individual holes.

In 1976 holes were drilled to a target depth of 152 m. (500 ft.) to verify heat flow values calculated from 1975 data and to increase confidence in results from an area at the west end of the Brothers fault zone not previously studied. These drilling strategies were only partly successful and drilling problems due to caving and groundwater conditions proved to be the practical limitation on hole depth in several areas. The deep static water level in the western portion of the study area (west of longitude 120°W) precluded measurement of temperature gradients below the water level.

Sixteen of the holes drilled in 1975 in central Oregon reached depths of 45 - 67.5 m. and useful gradient data were obtained from 14 of them. Of the remaining two holes, one was completed as a shallow water well (no. 285/32E - 36CC) and the other (no. 25S/31E-4BB) resulted in ambiguous data. Five other holes were completed to depths in the range of 30 - 45 m. (98 - 148 ft.) and six were terminated at depths less than 30 m. (98 ft.) due to caving. Two of the holes to depths of 30-45 m. (98 - 148 ft.) gave useful data, two others had low but measurable gradients and one of the five provided no useful information. For holes less than 30 m. (98ft.) deep, three gave useable data and one resulted in low gradients.

Seven of the holes drilled in central Oregon 1976 were bottomed at depths of 60 - 150 m. and all but one gave useful data. Two other

holes were stopped at depths of less than 60 m. (197 ft.) due to excessively expensive drilling caused by caving and only one of them resulted in useful gradient information.

In summary, twenty-eight of the holes drilled in central Oregon during the study resulted in useful heat flow measurements with poor quality data being obtained from six other holes. In addition, heat flow information of variable quality was obtained for 14 water wells and mineral exploration holes.

Factors which helped to improve the data quality in the relatively shallow holes drilled in this study are the low topographic relief and lack of forest cover, thus holes could be sited in areas of low relief and undisturbed natural sagebrush vegetation. Terrain corrections have not been made for any of the holes listed in table 1 except 4S/28E-21DB. Corrections were made for several of the other holes with largest apparent corrections and none exceeded 5 percent. In view of the other uncertainties such an error is negligible.

The heat flow data in central Oregon are discussed by sub-area in sequence from west to east as holes were generally drilled along profiles spaced at 20 - 30 km. (12-19 mi.) east-west intervals and oriented north-northeast perpendicular to the strike of the Brothers fault zone. On each profile, holes were spaced at intervals of 5-20 km. (3-12 mi.).

In addition an attempt was made to locate at least one hole in or near several of the major silicic volcanic vent areas along the zone. The silicic centers were chosen because it was anticipated that they offered better drilling conditions than the more extensive basalt flows, previous work at Glass Buttes had suggested that geothermal anomalies

might be associated with silicic vent areas (Bowen and others, 1977) and to evaluate geothermal energy potential associated with the systematic age progression of the silicic domes reported by Walker (1974). The goal of drilling in or near these silicic centers was only partly successful as road access to several of them was limited or non-existent. In addition, the subsurface extent of the silicic rocks is unpredictable and holes slightly "off-center" from the vents passed through interlayered basalt-rhyolite (or rhyodacite) sequences with repeated caving of the holes at the geologic contacts.

Newberry volcano area

Five holes were drilled and four water wells were logged for temperature data in the vicinity of Newberry volcano and the city of Bend although none of the holes and wells are on the volcano. Holes in the Newberry area are 18S/11E-25BD, 18S/12E-5EC, 19S/11E-25BA, 19S/16E-16DC, 20S/14E-25AA, 21S/11E-25BB, 21S/15E-16AB, 22S/14E-3AC and 22S/15E-35AD. Two holes in 18S/11E and 1&S/12E have very irregular temperature-depth curves and it is not possible to determine a single uniform gradient for them. Hole 1&S/11E-25BD has a gradient of 34.4°C/km in basalt between 30-105 m., however, the temperature decreases1°C abruptly at that depth. The hole was later deepened for use as a water well and could not be relogged so the significance of the sharp reversal in gradient is not clear. Holes 19S/11E-25BA and 21S/11E-25BB showed gradients increasing with depth, of 38°C/km. at 93-123 m. in the former and 65°C/km. from 27.5-35 m. in the latter.

The estimated heat flow for 21S/11E-25BB is 2.4 HFU but the value is of low reliability because of the very shallow depth of the hole and the

variable lithology consisting of interfingered basalt and rhyolite which causes a variable, but unknown porosity. The erratic gradients in all four of these holes on the west side of Newberry volcano are due at least in part to regional groundwater flow in the porous Quaternary basalts.

Four holes were drilled east of Newberry volcano in or near silicic volcanic centers at Pine Mountain, China Hat and Quartz Mountain. A fifth gradient was measured in a water well northeast of Pine Mountain (19S/16E-16DC). The holes at Pine Mountain (20S/14E-25AA and 21S/15E-16AB) were drilled to depths of 125 m. (410 ft.) and 152 m. (500 ft.) respectively. The former has a gradient decreasing with depth and averaging $34.4^{\circ}C/km$. in the deeper part of the hole resulting in a heat flow of 1.5 HFU. The latter hole has an average gradient of $55^{\circ}C/km$. although it increases with depth. It has a heat flow of 2.3 HFU, assuming a porosity of 0.05 for the rhyolite host rock. The silicic complex at Pine Mountain has been dated at approximately 21 million years (N. MacLeod, personal communication, March, 1977). These two heat flow values are not very similar and the gradient in both of the holes is curved although in opposite directions. The reason for this lack of agreement is not apparent.

Shallow holes at China Hat (22S/14E-3AC) and Quartz Butte (22S/15E-35AD) have very low gradients of 4°C/km. and 20.5°C/km. respectively. Both holes are in poorly consolidated volcanic rocks and the gradients may be affected by groundwater movement.

The best quality data in the Newberry volcano area is from a water well (19S/16E-16DC) in Pliocene basalt (Tob unit of Walker and others, 1967) with a gradient of 51.1°C/km. from 25-300 m. (82-904 ft.). The estimated thermal conductivity is 3.6 mcal/cm.sec.°C, based on samples from other holes in the same lithologic unit, resulting in a heat flow value of 1.8 HFU.

The data from the Newberry Volcano area show abundant evidence of moving groundwater as is typical of many young volcanic terrains where topographic relief combined with relatively high precipitation and subhorizontal layers of very permeable lava and ash result in rapid and copius groundwater flow. Typical conductive heat flow measurements can be made only below such flow where the rocks are more indurated by alteration and mineral deposition. Such depths may be deep or shallow depending on the pervasiveness of hydrothermal alteration. The relatively high heat flow at McKay Butte may represent an area of less groundwater influence on the subsurface temperature or some other effect. A deeper hole at this site would be very interesting.

Frederick Butte area

Five holes were drilled along a profile extending northeast from Frederick Butte, a rhyolite dome located in T. 22 S., R. 19 E. and a sixth hole was drilled about 15 km. west of the profile. Frederick Butte has a radiometric age of 3.9 million years (MacLeod and others, 1976). Holes 22S/19E-32AD and 23S/19E-5B were drilled at the northeast and south margins of Frederick Butte respectively. Holes 22S/19E-50C and 21S/19E-12D were drilled in Pliocene sedimentary strata and volcanic units covered by a thin veneer of Pliocene-Pleistocene basalt. There was a poor return of drill cuttings from these holes and they were bottomed at depths 37.5 m. (123 ft.) for 50C and 60 m. (197 ft.) for 12D because of the drilling problems. The northernmost hole on the profile (20S/21E-7BA) was drilled north of the Brothers fault zone to a depth of 57.5 m. (189 ft.) in altered andesite of the Clarno Formation of
Eocene and Oliogocene age. The sixth hole in the Frederick Butte area (21S/17E-1 AD) was drilled to a depth of 90 m. (295 ft.) in silicic volcanic rocks.

The four southern holes (22S/19E-32 AD, 23S/19E-5 B, 23 and 21S/19E-12 D) encountered basalt at a depth of about 25 m. (82 ft.) and pumice at 45-50 m. (148-164 ft.) in the holes that reached 50 m. depth. All four holes have a striking similarity in geothermal gradient and they appear to have penetrated similar lithologic units.

Heat flow values for the holes at the southern end of the profile on the northeast and south sides of Frederick Butte are 1.9 and 2.0 HFU respectively. Holes 22S/19E-5 CC and 21S/19E-12 D have values of 2.0 HFU. The northernmost hole on the profile, 20S/21E-7 EA, has a value of 1.85 HFU. A hole drilled west of the profile reached a depth of 90 m. (295 ft.) in silicic rocks. The gradient from 40-90 m. is $82.5^{\circ}C/km$, and the heat flow is 2.0 HFU.

Glass Buttes area

Five holes were drilled along a 30 km. (18 mi.) long profile oriented northeast through Glass Buttes. One of the holes (22S/23E- 14 CB) is only 17.5 m. deep due to drilling problems but the other four holes gave reliable heat flow values. Preliminary heat flow data for three of these holes (23S/23E-18 C, 24S/22E-2 DD and 24S/22E-20 AA) were discussed by Bowen and others (1977). An approximate heat flow value of 4.6 HFU was previously estimated for a water well (23S/23E-27) at Glass Buttes by Bowen and others (1977). Glass Buttes is a large silicic vent complex with an area in excess of 100 km.². Potassium-argon dating

indicates an age of 4.9 million years for at least part of the complex (MacLeod and others, 1976). There is extensive hydrothermal alteration and low grade mercury mineralization associated with the silicic rocks (Brooks, 1963). A dipole-dipole electrical resistivity study at Glass Buttes revealed a broad area at depth with low apparent resistivity interpreted to be less than 5 ohm meters (Hull, 1976).

The northernmost heat flow hole along the Glass Buttes profile, number 21S/23E-26C, was drilled to a depth of 60 m. in Pliocene basalt. The gradient is 42.4° C/km. and the heat flow value is 1.5 HFU. The next hole to the south, number 22S/23E-14 CB is only 19 m. (62 ft.) deep and the heat flow is estimated to be 1.5 HFU.

Holes 23S/23E-18 C and 24S/22E-2 DD are located on the north and south flanks of Glass Buttes and have anomalously high heat flow values of 3.1 and 2.9 HFU respectively. The high heat flow values for these holes and water well 23S/23E-27 define a broad area of anomalous heat flow. The southernmost hole on this profile, number 24S/22E-20 AA, was drilled to a depth of 60 m. (197 ft.) in sediments, silicic volcanic rocks and basalt. The heat flow value is 1.9 HFU which is the same as the values at the south side of the fault zone farther west.

The geology, geophysics and thermal character of the Glass Buttes area are favorable for the occurrence of geothermal resources and more detailed exploration is justified.

Wagontire-Riley Junction area

Seven holes were drilled along a profile adjacent to U.S. Highway 395 between Wagontire and Riley Junction and an eighth hole was drilled

5 km. (3 mi.) north of Squaw Butte, a silicic dome with a radiometric age of 5.1 million years (MacLeod and others, 1976). Other silicic vent complexes in the area include Egli Ridge (6.4 million years) and Wagontire Mountain (14.7 million years). From north to south the holes are 23S/28E-18D, 24S/25E-3BD, 24S/26E-13DC, 24S/26E-24AC, 25S/26E-4CC, 26S/24E-24AD, 26S/25E-20BB and 28S/24E-4BA. In addition three water wells were logged along the profile, (23S/26E-25AB, 23S/27E-29BB and 25S/25E-22B).

The heat flow value for the northernmost hole, 23S/28E-18D, is 1.4 which is low for eastern Oregon. This hole was drilled to 61 m. (200 ft.) in poorly consolidated sediments and the welded tuff of Double-O Eanch (Greene and others, 1972). Progressing southward along the profile the next holes are water wells 23S/26E-25AB and 23S/27E-29BB, both of which show irregular non-linear gradients. The low heat flow value is hole 23S/28E-18D and the irregular gradients in these two water wells is probably due to lateral ground water flow in the area.

Holes 24S/26E-13DC and 24S/26E-24AC were drilled less than two kilometers apart at a point approximately 8 km. (5 mi.) southwest of Riley Junction. The holes penetrate the same lithology, silicic tuffs with a variable degree of welding, but they have very different gradients and heat flow values. The heat flow values are 1.8 for 24S/26E-13DC and 3.3 for 24S/26E-24AC.

The average geothermal gradient for hole 25S/26E-4CC is $57.6^{\circ}C/km$. while the gradient for water well 25S/25E-22B is $50^{\circ}C/km$. We lack lithologic information on the latter and the former has an erratic gradient and is only 25 m. (82 ft.) deep, hence heat flow values are of poor

quality. Drilling in hole 26S/25E-20 BD was stopped at 22.5 m. (73 ft.) due to loss of circulation and no useful data were obtained.

At the southern end of the profile in the vicinity of Wagontireholes 26S/24E-24 AD and 28S/24E- 4 BA were drilled to depths of 60 m. (197 ft.) and 30 m. (98 ft.) respectively. The former is in silicic tuff and obsidian with a heat flow of 1.9 HFU and the latter is in welded ash flow tuff with a heat flow of 2.0 HFU.

Hole no. 245/25E- 3 BD, north of Squaw Butte, lies between the Glass Buttes and Wagontire-Riley Junction profiles. The 60 m. (197 ft.) deep hole encountered a sequence of basalt and silicic volcanic rocks. It has a gradient of 104°C/km. above 42.5 m. depth and a very low gradient of 9.7°C/km. from 42.5-60 meters. The erratic gradient may be due to shallow groundwater conditions and a reliable heat flow cannot be calculated.

Harney Basin area

Harney Basin is a broad area of internal surface drainage and low relief characterized by a shallow static water level and unconsolidated to poorly consolidated sediments. The Brothers fault zone passes tangentially across the south end of Harney Basin and may terminate at the Steens Mountain approximately 60 km. (37 mi.) southeast of Harney Lake. There are numerous hot springs in the area and previous heat flow investigations revealed a broad range of geothermal gradient values (Sass, and others, 1976B and Bowen and others, 1977).

During the present study eleven shallow holes were drilled in Harney Basin. Four of these were along a northeast trending profile in the west side of the Basin, six were along a parallel profile on the east side of

the Basin and the remaining hole was drilled between these profiles near Coyote Buttes.

The holes along the western profile, which passed near Double-O Ranch, are 25S/31E-4 BB, 26S/30E-3 BB, 26S/30E-20 DB and 27S/29E-21 AC. The first three holes were drilled in unconsolidated fluvial and lacustrine sediments and poorly consolidated claystone, siltstone and sandstone. In hole 25S/31E-4 BB the gradient increases erratically with depth from -10 to $30^{\circ}C/km$. and no reliable gradient was obtained. Holes 26S/30E-3 BB and 26S/30E-20 DB were terminated at shallow depth due to caving and the gradients are of poor quality. Sass and others (1976B) reported heat flow values of 1.8 HFU for two 150 m. deep holes in this portion of Harney Basin. A heat flow of 2.1 HFU was obtained from hole 27S/29E-21 AC drilled in the Double-O welded tuff although there is some uncertainty in the thermal conductivity value for this tuff due to the variable degree of welding and our lack of knowledge of the resulting porosity variation.

The eastern profile of heat flow holes passes through Diamond Craters, a Holocene basalt extrusive center characterized by numerous maars and craters. The six holes along this profile are 25S/33E-3 BD, 27S/33E-33 CB, 28S/32E-36 CC, 29S/32E-34 DC, 30S/31E-23 BC and 32S/32E-16 BA.

The northernmost hole on the profile, number 25S/33E-3 BD was drilled 1 km. south of Crane hot springs to 29 m. (95 ft.) in poorly consolidated sedimentary strata. The high heat flow of 4.5 HFU may be related to the hot spring but details of the hydrology are not known. Two water wells near the hot spring, 24S/33E-35 AD and 25S/33E-11 BB, with depths of 85 m.

(279 ft.) and 65 m. (213 ft.) respectively, have estimated heat flow values of 1.8 and 1.5 HFU. Sass and others (1976B) report heat flow values for nearby water wells of 1.5 and 1.7. The thermal conductivity values used by Sass and others (1976B) appear to be slightly lower than we obtained and we estimate the heat flows to be closer to 1.6 and 1.9 HFU units for these wells located at 24S/34E-19C and 24S/33E-9D respectively.

Hole 27S/33E-33CB was terminated at a depth of 30 m. (98 ft.) in vesicular basalt above the static water level. The gradient is close to zero suggesting the influence of shallow groundwater on heat flow. A 140 m. deep water well 10 km. to the west, number 27S/32E-23BB, has an estimated heat flow value of 1.7 HFU. Hole 28S/32E-36CC near Diamond Craters encountered a substantial influx of groundwater and it was completed as a water well by the landowner, thus precluding measurement of a reliable geothermal gradient.

Hole 29S/32E-34DC has a distinctly anomalous heat flow of 3.5 HFU in an area without known hot springs. The hole was drilled to 52 m. (171 ft.) in welded tuff underlain by poorly consolidated sedimentary strata. The source of the heat flow anomaly is not known.

The southernmost holes on the Diamond Craters profile have low heat flow values. Hole 30S/31E-23BC is 31 m. (102 ft.) deep and has a very irregular but low gradient. Hole 32S/32E-16BA was drilled in Catlow Valley in basalt to 60 m. (197 ft.) and it has a very linear but low gradient of 17.5°C/km. resulting in an anomalously low heat flow of 0.7 HFU. Sass and others (1976) report heat flow values for 5 holes farther south in Catlow Valley, averaging 1.3 HFU with a maximum of 1.5 HFU.

The low values in holes 30S/31E-23BC and 32S/32E-16BA may be due to lateral transport of heat by groundwater moving in a large aquifer system.

A single hole (27S/30E-36CC) was drilled near Coyotte Buttes, between the Double-O Ranch and Diamond Craters profiles to verify the anomalous heat flow in an area of previously reported high temperature gradients (Bowen and others, 1975). The hole was drilled to a depth of 67.5 m. (221 ft.) in claystone and sandstone. The gradient is 88.4°C/km. resulting in a heat flow for these relatively porous, low conductivity rocks of 2.0 HFU as previously reported by Bowen and others (1977).

The geothermal gradients and heat flow values are shown in table 1 and a map summarizing the heat flow data is included as figure 2. Included are heat flow values by Sass and others (1976B), which have been increased approximately 10 percent to make them more comparable with the values calculated during the present study. Sass and others (1976B) used a thermal conductivity value for the sedimentary units of 2.1 mcal./cm. sec.^OC whereas we used a value of 2.3 mcal./cm. sec. ^OC in our calculations. The higher conductivity value is also more consistent with measured values for their hole near Diamond Craters (295/31E-2B).

Black Mountain area

In order to obtain a reliable heat flow value in pre-Tertiary rocks north of the Brothers fault zone, the final hole was drilled in the Blue Mountains in a trondjemite stock of Mesozoic age. The hole is located west of Black Mountain in Morrow County, Oregon (figure 3).

The hole was drilled to a depth of 248 m. (815 ft.) but a failure in the observation pipe limits gradient measurement to the interval above 130 m. (427 ft.). The uncorrected gradient is linear and has a value of 36°C/km. Due to the relatively high thermal conductivity of quartz-rich host rock, the terrain-corrected heat flow is 1.9 HFU.

Figure 3 - Heat flow hole, Black Mountain, Morrow County, Oregon

Figure 4 - Heat flow holes, Sucker Creek, Harney County, Oregon

Sucker Creek area

The Brothers fault zone is the locus of several centers of basaltic volcanism of Pleistocene and Holocene age, between the Cascade Range on the west and Diamond Craters in Harney Basin on the east. Although the structural lineament continues southeast from Harney Basin to Steens Mountain, the trend of young mafic volcanic centers diverges and extends eastward to Jordan Craters and projects towards the Snake River Plain in Idaho. A heat flow map of the United States by Sass and others (1976A) shows the western edge of the Battle Mountain High, an area of heat flow in excess of 2.5 HFU, extending into Oregon in the vicinity of the Sucker Creek area. In order to extend the data collected along the Brothers fault zone, test this young volcanic trend, and investigate the northwestern limits of the Battle Mountain High, three holes were drilled in a north-south profile along Sucker Creek adjacent to the eastern border of Oregon between the towns of Adrian on the north and Jordan Valley on the south (figure 4).

The holes were drilled mainly in claystone, siltstone and sandstone of the Sucker Creek Formation of Miocene age. From north to south the hole numbers are 23S/46E-21BC, 25S/46E-18AA and 26S/46E-28AB with depths of 140 m. (460 ft.), 150 m. (492 ft.) and 125 m. (410 ft.) respectively. The northernmost hole, 23S/46E-21BC has a gradient of 63.0° C/km. and a heat flow of 1.8 HFU. Hole number 25S/46E-18AA has a gradient of 52.5° C/km. and a heat flow of 1.7 and the southernmost hole, 26S/46E-28AB has gradient and heat flow values of 74.7° C/km. and 2.0 HFU. The heat flow in all three holes is significantly lower than in the Battle Mountain High to the east and also lower than many values in the Vale area, which lies just north of the Sucker Creek area (figure 4), where earlier work by Bowen and others (1977) revealed anomlously high heat flow.

DISCUSSION

Heat flow along the Brothers fault zone is characterized by a wide range of values. The values presented herein are based on relatively shallow holes drilled in variable lithologies. The hydrology of the western one-half of the study area is poorly known and holes drilled in this area were bottomed above the static water level. In contrast, in the eastern one-half of the area the static water level generally lies at depths of 0-50 m. (0-164 ft.) beneath the surface. Movement of shallow groundwater has influenced the natural heat flow along the zone in some cases so severely that calculation of conductive heat flow is not possible.

The holes at the western end of the Brothers fault zone appear to be markedly influenced by regional groundwater movement and conductive heat flow probably cannot be measured in basalt under these conditions in holes less than 300 m. (1000 ft.) deep in the vicinity of Newberry volcano and the city of Bend. Better quality data were obtained in holes in silicic volcanic rocks at Pine Mountain although the gradient in hole 20S/14E-25AA drilled to a depth of 125 m. (410 ft.) appears to show the effect of moving groundwater.

The crustal heat flow measured in holes along profiles between Pine Mountain and Riley Junction appears to be higher in the fault zone than in the area north of the fault zone. The average of the four most reliable values north of but near the zone is 1.6 HFU while the values in the fault zone are 1.9 HFU or greater, ie., an increase of about 15 percent.

There are few published heat flow values for central Oregon north of the Brothers fault zone other than the values obtained in this study. Bowen and others (1977) describe values from four holes in basalt of the Columbia River Group near Arlington ranging from 1.0 to 2.1 HFU with an average of 1.4 HFU. They also give an estimated heat flow value of 1.4 HFU for a well near Dufur, Oregon (1S/13E-20DA) in basalt of the Columbia River Group and a value of 2.0 HFU for a well near John Day (13S/31E-27DD) in serpentinite of pre-Late Triassic age. Observed heat flow for holes in south-central Washington in basalt of the Columbia River Group ranges from 1.36 to 1.52 HFU (Sass and others, 1971A). The most reliable single heat flow value measured in Oregon north of the Brothers fault zone is in a hole, near Black Mountain in Morrow County, described below, with a value of 1.9 HFU.

Published heat flow values for the Basin and Range province in Oregon south of the Brothers fault zone exhibit a wide range and many values appear to be influenced by groundwater movement (Sass and others, 1976B). A compilation of the more reliable values by Diment and others (1975) indicates that observed heat flow in central Oregon south of the Brothers fault zone ranges from 1.5 to greater than 3.0 HFU. A compilation of 24 heat flow values by Bowen and others (1977) for southeastern Oregon, including values from the Brothers fault zone but not from the Snake River Basin, revealed an arithmetic mean of 2.64 HFU although many of the values are from shallow holes and due to the relatively small sample population this "average" value cannot be considered to be firmly established.

The only extensive heat flow anomaly measured in the western one-half of the Brothers fault zone during the present study is at Glass Buttes where three holes outline a broad area with values at least 50 percent

above the regional average. The source of the anomalous heat flow at Glass Buttes is uncertain. The radiometric age of 4.9 million years, if representative of the volcanic event which produced the entire silicic complex, may be too old to explain the heat flow anomaly. Calculations by Smith and Shaw (1975) indicate that most, if not all, of the original heat associated with the silicic volcanism would have been lost. There are uncertainties in the assumptions underlying this calculation, especially in the subsurface volume of the original magma, hence an igneous intrusive with residual magmatic heat cannot be eliminated as a possible causative body for the heat flow anomaly.

There are three higher than average heat flow values on the Wagontire-Riley Junction profile and it is possible to outline these values, the anomalously high values at Glass Buttes and the Coyotte Buttes anomaly by an area elongated in a northwest-southeast direction parallel to the Brothers fault zone (figure 2). This area includes the string of hot springs west of Harney Lake and Iron Mountain, a silicic dome located 21 km. (13 mi.) west of Harney Lake and dated at 2.7 million years (Parker, 1974). The connection of all of these areas into a single zone of high heat flow is plausible, but speculative. This band of high heat flow, if it exists, may be related to the volcanism along the Brothers fault zone, and/or to crustal disruption and possible thinning associated with the faulting.

In Harney Basin the background heat flow value is about 1.7 \pm 0.2 HFU, however, there are several areas with anomalously high heat flow values exceeding 2.5 HFU including the Coyotte Buttes area, Crane hot springs area, and the area represented by hole 29S/32E-34DC south of Diamond Craters.

Additional evidence for anomalous heat flow is provided by the numerous hot springs and wells in Harney Basin (Bowen and Peterson, 1970 and Leonard, 1970). Estimated reservoir temperature based on geochemical geothermometers have been determined for many of the springs and are listed in table 2. Most of the silica geothermometer temperatures are in the range of 110-140°C (based on equilibrium with quartz) while the temperatures based on the sodium-potassium-calcium geothermometer exhibit more scatter and range up to 170°C. The distribution of hot springs and wells suggests that the areas of high heat flow may be larger than presently known. For example, an extensive group of hot springs extends 30 km. (19 mi.) to the west from the Coyotte Buttes heat flow anomaly and there are numerous warm wells along the northern side of Harney Basin near the towns of Hines and Burns.

The depth to the hot aquifer or aquifers is not known with certainty. The geothermal gradient associated with the background heat flow is approximately 75° C/km. while the gradients in the areas of high heat flow are in the range of 100-150°C/km.; thus the extrapolation of the gradients to depths of 1.5 and 1.0 km. respectively would result in temperatures consistent with these estimated from geochemical thermometers. It is likely, however, that the thermal conductivity of the rocks in the basin decreases with increasing depth because of lithologic changes and loss of porosity due to compactions and cementation. The near surface poorly consolidated sedimentary strata are likely underlain by volcanic rocks with the latter having a higher average conductivity than the former. For these reasons the geothermal gradients measured in relatively shallow holes will likely

Table 2

Geothermal gradient calculations and geochemical temperatures for wells in Harney Basin. The chemical data are from Leonard (1970) except as noted. Geochemical temperatures are calculated from formulas given by Truesdell (1975).

Well location	Depth, Meters	Measured Temperatur ^O C	Gradient re ^o C/km. {estimated)*	Estimated SiO ₂ (Adiabatic) Temp. ^O C.	Reservoir SiO2 (Conductive) Temp. °C.	Temperature) NaCaK Temp. ^o C
225/30E-27 DDC 225/31E-34 AAA 225/32E-34 AAA1 225/322E-30 CDB 225/322E-36 AAB	38.7 221.0 304.8 197.2 55.5	14 14 72 14	78 14 200 54	108 111 128 112 113	106 111 131 111 113	66 58 104 62 78
23S/30E-23 CDA 23S/30E-35 AAD 23S/30E-35 DDD 23S/31E- 5 AAC 23S/31E-24 AAC	105.2 61.0 121.9 34.8	17 25 22 11 11	57 230 0 0	111 108 100 110 95	111 106 98 109 92	82 70 70 46 59
235/32E-7 CAB 235/32E-28 ACD 245/30E-1 ABD 245/32E-5 AAD 245/32E-8 DAB	28.4 76.2 171.9 82.3 857.1	11 16 27 13 46	- 66 93 24 41	105 105 100 99 119	103 104 98 96 120	51 137 64 140 105
245/3225-13 ACB 245/3225-22 BCC 245/3225-30 ADD 245/335-24 AAC 245/335-34 CCA**	73.8 56.4 103.7	14 12 14 80	41 53 	106 106 111 111 124	105 105 111 111 125	168 95 169 145 121
24S/34E-31 BAC 24S/34E-31 DDA 25S/32E- 7 BAB 25S/32E-24 BDB 25S/32E-35 BDB	277.0 92.0 410.0 18.3 121.9	12 12 41 11	4 11 73 	106 106 107 95 119	105 105 106 92 120	41 41 120 152 161
25S/32≟E–25AAB 27S/29≟E–36##		12 68		105 129#	104 132#	145 130#

* Geothermal gradient estimated from aquifer temperature and hole depth given by Leonard (1970) based on assumed mean annual surface temperature of ^OC.

** Crane Hot Spring

Temperature from Mariner et al. (1974)

Unnamed hot spring near Harney Lake

decrease with depth so that the reservoir temperatures estimated from geochemical data will be encountered at depths perhaps 30-40 percent greater than the 1.5 and 1.0 km. estimated from the shallow gradient data for areas of normal and high heat flow respectively. A gradient of 45°C/km. measured below 1 km. (3281 ft.) was reported by Sass and Munroe (1973).

In summary, there is widespread evidence in Harney Basin of the existence of hot water in the range of llO-170°C which would be suitable for non-electric energy applications. The nature of the heat source is not known. The youngest silicic domes near the basin appear to be about 8 million years old (MacLeod, 1976) although extensive ash-flow tuff peripheral to Harney Basin has an age of 6.4 million years and there is wide-spread basaltic volcanism of Holocene and Pleistocene age. There is no evidence in the published geochemical data for the very high temperatures (greater than 200°C) that would be needed for economical electric power generation using existing conversion technology. The meager existing data do not permit definitive conclusions, however, in regard to the nature and reservoir temperature of the geothermal resource in Harney Basin and further geological and geophysical studies are needed.

MacLeod and others (1976) have described an east to west progression in the age of silicic volcanism along the Brothers fault zone and a broad area to the south. The silicic volcanism began about 9 million years ago in Harney Basin and progressed westward at a rate of 1-3 cm./year to its present location at Newberry volcano. The lack of heat flow anomalies associated with most of the younger silicic volcanic centers west of Glass Buttes may be due to one or more of the following factors. The relatively shallow depth of the holes drilled in and near the younger silicic complexes

may preclude the accurate detection of residual magmatic heat as a significant groundwater gradient may act to sweep heat out of the areas drilled. Alternatively the areal extent of the silicic domes at the surface may exceed their subsurface area; drilling at McKay Butte west of Newberry volcano indicated that at least some of the domes may be "mushroom" shaped. If the subsurface area of these bodies is significantly less than their surface area, they may have cooled quickly and lack residual heat even though they are only 0.7-3 million years old. Unfortunately the quantitative data on subsurface size are lacking and therefore accurate calculations re their residual heat content are not possible. It is entirely possible that the heat source for the thermal manifestations in Harney Basin and for the higher than average heat flow in the area between Glass Buttes and Harney Basin as outlined in figure 2, may be related to the Pliocene to Holocene basalt volcanism rather than silicic volcanism or alternatively the source of heat could be deep groundwater circulation associated with the fault zone without any direct heat contribution from the volcanic rocks.

In summary there is no discernible systematic pattern of changing heat flow from east to west parallel to the progressive age migration of silicic volcanism. There is a measureable increase in heat flow in the Brothers fault zone as compared to the area north of the zone. This increase coincides with, and may reflect a major change in, crustal structure associated with the fault zone. Lawrence (1970) has noted that the Brothers fault zone is the northern terminus of the Basin and Range province in central Oregon and it appears that this zone marks the thermal as well as tectonic boundary of the province.

There are three areas along and near the Brothers fault zone that are especially promising for geothermal resource development: (1) Harney Basin, (2) Glass Buttes, and (3) Newberry volcano (the last based on geological considerations). It is possible that the area of high heat flow noted at Glass Buttes may extend eastward at least as far as Coyotte Buttes. The geothermal resource in Harney Basin appears to be best suited to non-electric applications. Geochemical data on hot waters are lacking for the Glass Buttes area and no estimate of subsurface reservoir temperature is possible. There are no known hot springs in the Glass Buttes area. The discovery of a geothermal anomaly at Glass Buttes was serendipitous and resulted from drilling of a water well. Similarly, there are no known hot springs along the Brothers fault zone between Glass Buttes and Pine Mountain and it is entirely possible that "blind" geothermal resources are present in the western half of the zone. The west end of the fault zone and Newberry volcano are geologically promising areas for geothermal resources but the reliable measurement of heat flow in holes less than 152 m. (500 ft.) deep in silicic rocks is not possible due to groundwater conditions. Holes in basalt will need to be at least 300 m. (1000 ft.) deep.

REFERENCES

- Bowen, Richard G., Blackwell, David D., and Hull, Donald A., 1977, Geothermal exploration studies in Oregon: Oregon Dept. of Geology and Mineral Industries Geothermal report 1, in press.
- Bowen, Richard G., Blackwell, David D., Hull, Donald A., and Peterson, Norman V., 1976, Progress report on heat-flow study of the Brothers fault zone, central Oregon: Oregon Dept. of Geology and Mineral Industries, Ore Bin, v. 38, no. 3, p. 39-46.
- Bowen, Richard G., 1975, Geothermal gradient data: Oregon Dept. of Geology and Mineral Industries open-file report 0-75-3, 114 p.
- Bowen, Richard G., Blackwell, David D., and Hull, Donald A., 1975, Geothermal studies and exploration in Oregon: Oregon Dept. of Geology and Mineral Industries open-file report 0-75-7, 65 p.
- Bowen, Richard G., and Peterson, Norman V., 1970, Thermal springs and wells in Oregon: Oregon Dept. of Geology and Mineral Industrie: Misc. Paper no. 14.
- Brooks, Howard C., 1963, Quicksilver in Oregon: Oregon Dept. of Geology and Mineral Industries Bull. 55, 223 p.
- Brott, Charles A., Blackwell, David D., and Mitchell, John A., 1977, Tectonic implications of the heat flow of the western Snake River Plain, Idaho: paper submitted for publication in Bulletin of the Geological Society of America.
- Couch, Richard W., and Lowell, Robert P., 1971, Earthquakes and seismic energy release in Oregon: Oregon Dept. of Geology and Mineral Industries, Ore Bin, v. 33, no. 4, p. 61-84.
- Diment, W.H., Urban, T.C., Sass, J.H., Marshall, B.V., Munroe, R.J., and Lachenbruch, A.H., 1975, Temperatures and heat contents based on conductive transport of heat: p. 84-103 in White, D.F. and Williams, D.L., ed., Assessment of Geothermal resources of the United States: U.S. Geol. Survey Circ. 726, 155 p.

- Greene, Robert C., Walker, George W., and Corcoran, Raymond E., 1972, Geologic map of the Burns quadrangle, Oregon: U.S. Geol. Survey Map I-680.
- Groh, Edward A., 1966, Geothermal energy potential in Oregon: Oregon Dept. of Geology and Mineral Industries, Ore Bin, v. 28, no. 7, p. 125-135.
- Hull, Donald A., 1976, Electrical resistivity survey and evaluation of the Glass Buttes geothermal anomaly: Oregon Dept. of Geology and Mineral Industries open-file report 0-76-1, 11 p.
- Lawrence, Robert D., 1976, Strike-slip faulting terminates the Basin and Range province in Oregon: Geol. Soc. America Bull., v. 87, no. 6, p. 846-850.
- Leonard, A.R., 1970, Groundwater resources in Harney Valley, Harney County, Oregon: Oregon State Engineer Ground Water Report 16, 85 p.
- MacLeod, Norman S., Walker, George W., and McKee, Edwin H., 1976, Geothermal significance of eastward increase in age of upper Cenozoic rhyolitic domes in southeastern Oregon: p. 465-474 in Proceedings Second U.N. Symposium on the Development and Use of Geothermal Resources, v. 1, 844 p.
- Mariner, R.H., Rapp, J.B., Willey, L.M., and Presser, T.S., 1974, The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon: U.S. Geol. Survey open-file report, 27 p.
- Parker, Donald J., 1974, Petrology of selected volcanic rocks of the Harney Basin, Oregon, Oregon State Univ.: PhD dissertation, 119 p.
- Peterson, Norman V., Groh, Edward A., Taylor, Edward M., and Stensland, Donald E., 1976, Geology and mineral resources of Deschutes County, Oregon: Oregon Dept. of Geology and Mineral Industries Bulletin 89, 66 p.
- Piper, A.M., Robinson, T.W., and Park, C.F., Jr., 1939, Geology and ground-water resources of the Harney Basin, Oregon: U.S. Geol. Survey Water-Supply Paper 841, 189 p.

- Roy, R.F., Decker, E.R., Blackwell, D.D., and Birch F., 1968, Heat flow in the United States: Jour. Geophys. Research, v. 73, no. 16, p. 5207-5221.
- Sass, J.H., Diment, W.H., Lachenbruch, A.H., Marshall, B.V., Munroe, R.J., Moses, T.H., Jr., and Urban, T.D., 1976A, A new heat-flow contour map of the conterminous United States: U.S. Geol. Survey open-file report 76-756, 24 p.
- Sass, J.H., Galanis, S.P., Jr., Munroe, R.J., and Urban, T.C., 1976B, Heatflow data from southeastern Oregon: U.S. Geol. Survey open-file report 76-217, 52 p.
- Sass, J.H., and Munroe, Robert J., 1973, Temperature gradients in Harney County, Oregon: U.S. Geol. Survey open-file report, 3 p.
- Sass, J.H., Lachenbruch, A.H., Munroe, R.J., Green, G.W., and Moses, T.H., Jr., 1971A, Heat-flow in the western United States, J. Geophys. Research, v. 76, p. 6376-6413.
- Sass, J.H. Lachenbruch, A.H., and Munroe, R.J., 1971B, Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations: J. Geophys. Research, v. 76, p. 3391-3401.
- Smith, R.L., and Shaw, H.R., 1975, Igneous-related geothermal systems: p. 58-83 in White, D.F., and Williams, D.L., ed., Assessment of Geothermal Resources of the United States - 1975, U.S. Geol. Survey Circ. 726, 155 p.
- Stewart, J.H., Walker, George W., and Kleinhampl, F.J., 1975, Oregon-Nevada lineament: Geology, v. 3, no. 5, p. 265-268.
- Trauger, F.D., 1950, Basic ground-water data in Lake County, Oregon: U.S. Geol. Survey open-file report, 287 p.
- Truesdell, A.H., 1976, Summary of section III, geochemical techniques in exploration: Proceedings second U.N. symposium on the development and use of geothermal resources, v. l, p. lili-lxxix.

- Walker, George W., 1974, Some implications of late Cenozoic volcanism to geothermal potential in the High Lava Plains of south-central Oregon: Oregon Dept. of Geology and Mineral Industries, Ore Bin, v. 36, no. 7, p. 109-119.
- Walker, George W., 1969, Geology of the High Lava Plains province: p. 77-79 in Mineral and water resources of Oregon: Oregon Dept. of Geology and Mineral Industries Bull. 64, 462 p.
- Walker, George W., Peterson, Norman V., and Greene, Robert C., 1967, Reconnaissance geologic map of the east half of the Crescent quadrangle, Lake, Deschutes, and Crook Counties, Oregon: U.S. Geol. Survey Map I-493.

APPENDIX A

GEOTHERMAL GRADIENT TABLES

LOCATION: MORROW COUNTY, OREGON HOLE NUMBER: 4S/28E-21DB DATE MEASURED: 2/15/1976

DEPTH,	DEPTH,	TEMPER.	ATURE	GEOTHERMAL	GRADIENT
METERS	FEET	DEG. C	DEG. F	DEG. C/KM.	DEG. F/100 FT.
75 0	10.2	0.15	10 10	0	0
15.0	49.2	9.15	48.47	.0	.0
20.0	65.6	9.13	48.43	-4.0	-0.22
25.0	82.0	9.15	48.47	4.0	0.22
30.0	98.4	9.20	48.56	10.0	0.56
35.0	114.8	9.28	48.70	16.0	0.90
40.0	131.2	9.36	48.85	16.0	0.90
45.0	147.6	9.48	49.06	24.0	1.35
50.0	164.0	9.60	49.28	24.0	1.35
55.0	180.4	9.73	49.51	26.0	1.46
60.0	196.8	9.89	49.80	32.0	1.80
65.0	213.2	10.09	50.16	40.0	2.24
70.0	229.6	10.27	50.49	36.0	2.02
75.0	246.0	10.44	50.79	34.0	1.91
80.0	262.4	10.61	51.10	34.0	1.91
85.0	278.8	10.79	51.42	36.0	2.02
90.0	295.2	10.98	51.76	38.0	2.13
95.0	311.6	11.16	52.09	36.0	2.02
100.0	328.0	11.35	52.43	38.0	2.13
105.0	344.4	11.53	52.75	36.0	2.02
110.0	360.8	11.71	53.07	36.0	2.02
115.0	377.3	11.90	53.42	38.0	2.13
120.0	393.6	12.09	53.76	38.0	2.13
125.0	410.0	12.27	54.09	36.0	2.02

	PW:	01.00			
	BER: 135 11E . SURED: 6/03/7				
UNIC MEA	5URCU: 0/03/1	0			
DEPTH	DEPTH	TEMPE	RATURE	GENTHERM	AL GRADIENT
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 F
10.0	2 2	2 210	K (80	. 0	• 0
<u> </u>	32.8	3.240	46.83	•0	1.8
	41.0	8.320	46.98	32.0	2.0
15.0	49.2	8.410	47 • 14	36.0	•0
17.5	57.4	8.410	47.14	•0	•0
	65.6	8.440	47-19	12.0	•7
22.5	73.8	8.470	47.25	12.0	- • 4
25+0	82.0	8.450	47.21	-8.0	-3.1
30.0	90•2 98•4	8.310	46.96	-56.0	-9.0
		7.900	46.22	-154.0	3.7
32+5	106.6	8.070	46.53	68.0	2.9
35.0	114.8	8.200	46.76	52.0	•4
40.0	123.0	8.550	46.80	8.0	2.2
42.5	131.2	8.320	46.98	40.0	1.8
	139.4	8.400	47.12	32.0	1.5
45+0 47+5	147.6	8 • 470	47.25	28+0	1.3
50.0	155.8	8.530	47.35	24•0	1.5
52.5	164.0 172.2	8.600 8.660	47.59	28•0 24•0	1.3
					1•1
<u> </u>	130.4 138.6	3.710	47.68	20.0	1.1
		8.780		28.0	1.3
60 • 0 65 • 0	196•8 213•2	8.840	47.91	24.0	1.3
70+0	229.6	8.960	48.13	24.0	1.5
75.0	246.0	9.100	48•38 48•65	28.0	1.5
		9.250		30.0	5.5
30.0	262.4	9•450	49.01	40.0	5.5
85.0	278.8	9.650	49.37	40.0	1.3
90.0	295.2	9.770	49.59	24.0	2.7
95.0	311.6	10.020	50.04	50.0	and the second se
100.0	328.0	10.290	50.52	54.0	3.0
105.0	344.4	10.570	51.03	56.0	3•1
110.0	360.8	9.240	48.63	-266.0	-14.6
115.0	362.4	9.210	48.58	-60.0	-3.3
120.0	393.6	9.210	48.58	•0	•0
125.0	410.0	9.220	48.60	2.0	•1

a la construction

	FIGN: DESCHUTES CO, BS-WH				
	NUMBER: 135 12E 56	0			
DEPTH	DEPTH		RATURE		L GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
10+0	32.8	9.670	49-41	•0	•0
50.0	65.6	9.620	49.32	-5+0	*•3
30+0	98 • 4	9.840	49=71	22.0	1.2
40.0	131.2	10-130	50.23	0.65	1.6
50-0	164.0	10.220	50.40	9.0	•5
50+0 70+0	196-8 229-6	10•320 10•400	50 • 58 50 • 72	10-0	•4
80.0	262+4	10.340	50+61	-6+0	*•3
90.0	295.2	10.350	50+63	1.0	•1
100.0	328.0	10.340	50.61	-1.0	-•1
110.0	350-8	9.940	49+89	-40.0	-2.5
120-0	333+6	9.900	49.82	-4.0	-•2
130-0	426 • 4	9.900	49+82	•0	•0
150.0	492.0	9.900	49.82	•0	•0
160.0	324.8	9.910	49.84	1.0	•1
170.0	557.6	9.920	49.86	1.0	•1
130.0	590.4	9.920	49+86	•0	•0
190.0	623.2	3.920	49.86	•0	•0
200.00	656+0	9.960	49.93	4.0	•2
210.0	638•8 721•6	9•980 10•050	49•96 50•09	2+0	•1
230.0	754.4	10.230	50.41	18.0	1.0
	••••••••••••••••••••••••••••••••••••••		······		
		A-4			

LIGE C. MUM	185/45E/21CH 3ER: TS-RCH	Þ			
	SURED: 11/30/	76			
DEPTH	DEPTH	TEMPE	RATURE	GENTHERMAN	GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F
					020171001
	.0.0	417 470	-0.10		0
<u>15.0</u>	49.2	15.070	59.13	•0	•0
50.0	65.6	15.900	60.62	166-0	9•1
25.0	32.0	16.870	52.37	194.0	10.6
30.0	98.4	17.750	63.95	176.0	9.7
35-0	114.8	18.790	65.82	208.0	11.4
+2+3	131-2	19.310	67.66	204.0	11.2
45.0	147.6	20.840	69.51	206.0	11.3
50.0	164.0	21.940	71.49	220.0	12.1
55.0	180-4	23.090	73.56	230.0	12.6
50.0	196.8	24.080	75.34	198.0	10.9
65·0	213.2	25.090	77.15	232.0	11 • 1
70.0	229.6	25.640	78.15	110.0	6.0
75.0	246+0	26.480	79.66	168.0	9.2
80.0	262.4	27.080	80.74	120.0	6.6
85.0	278.8	27.770	81.99	138.0	7.6
90.0	295.2	28.610	83.50	168.0	9.2
95-0	311.6	29.480	85.06	174•0	9.5
100.0	358.0	30.010	86.02	106.0	5.8
105.0	344.4	33.493	86.88	96.0	5.3
110.0	360.8	30.980	87.76	98.0	5•4
115.0	377.2	31 • 400	88.52	84•0	4.6
120.0	393.6	32.140	89.85	. 148.0	8•1
125.0	410.0	32.820	91.08	136.0	7.5 6.9
130.0	426 • 4	33.450	92.21	126.0	4.5
135.0	442.8	33.860	92.95	32.0	
140.0	459+2	34.330	93.79	94.0	5.2
145.0	475.6	35.220	95.40	178.0	9.8
150.0	492.0	36+550	97.79	266.0	<u>14•6</u> 9•8
155+0	508+4	37 • 440	99.39	178.0	8.9
150.0	524 . 8	38.250	100.85	162.0	
165.0	541.2	38.980	102.16	146.0	8.0
170.0	557.6	39.720	103.50	148.0	8.1
175.0	574.0	40.760	105.37	208.0	11•4 8•3
130.0	590-4	41.560	106.81	160.0	and the second second second second
185.0	536.8	42.360	108.25	160.0	8.8
190.0	523-2	43.430	110.17	214.0	11.7
195+0	639.6	44.260	111.67	156.0	9.1
200.0	656.0	45.040	113.07	156.0	8.6
205.0	672.4	45.860	114.55	164.0	9.0
210.0	588.8	46.550	115.79	138.0	7.6
215.0	7.5.2	47 • 130	116.83	116.0	5.4
550.0	721.6	47.473	117.45	58.0	3.7
225.0	738.0	47.980	118.36	102.0	5.5
230.0	754 • 4	48.710	119.68	146.0	8.0
235.0	770.8	49.470	121.05	152.0	8.3
240.0	737.2	50.310	122.56	168.0	9.2
245.0	803.6	50.960	123.73	130.0	7 • 1
250.0	820+0	51.650	124.97	138.0	7.6

HOLE N.M	: 801SE AN3, 185/455/210 BER: TS-RDH SURED: 11/30/	В	PAGE	2	
DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG E	DEG C/KM	DEG F/100 FT
255+3	836 . 4	52.300	126 • 14	130.0	7•1
260.0	852-8	52.840	127-11	108.0	5.9
265-0	869.2	53.420	128.16	116.0	5.4
270.0	885.6	53.990	129.18	114.0	6.3
275-0	902.0	54.610	130.30	124.0	6.8
280.0	918-4	55.220	131.40	122.0	6.7
235-0	934+8	55.780	132.40	112.0	6 • 1
290.0	951.2	56.210	133.18	86.0	4.7
295.0	967.6	56.860	134.35	130.0	7.1
300.0	984.0	57.140	134.85	56.0	3.1
305.0	1000-4	57.470	135.45	66.0	3.5
310.0	1016.8	57.990	136.38	104.0	5.7

LOCATION; LAVA BUTTE, OREGON
195/11E-25BA
HOLE NUMBER: FS+1
DATE MEASURED: 10/1/75

· · · · · · ·

-

AL GRADIENT	GEOTHERMAL GRADI		TEMPER	DEPTH	
DEG F/100 F1	DEG C/KM	DEG F	DEGC	DEPTH	METERS
•0	٠Ō	45.88	7.710	75•4	23•0
-•2	=4+0	45.81	7.670	108.2	33.0
•1•3	-24.0	45.37	7.430	141.0	43.0
•3	6+0	45.48	7.490	173.8	53.0
• 4	8.0	45.63	7.570	206.6	63.0
• 6	11+0	45.82	7.680	239+4	73.0
2.4	43.0	46.60	8.110	272.2	83.0
••2	-3.0	46.54	8.080	305.0	93.0
1 • 4	26.0	47.01	8.340	337.8	103.0
2.7	50.0	47.91	8.840	370+6	113.0
2.1	39.0	48.61	9.230	403.4	123.0

A-6

LOCATION: BEAR RIDGE, OREGON 195/16E-16DC HOLE NUMBER: DATE MEASURED: 10/2/75

	DEPTH	DEPTH	TEMPE	RATURE	GEOTHERMAL GRADIENT		
	METERS	FEET	DEG Ç	DEG F	DEG C/KM	DEG F/100 FT	
	25.0	82•0	12.430	54.37	•0	•0	
	50.0	164.0	13.540	56.37	44 • 4	2.4	
	75.0	246.0	13.560	56.41	• 8	•0	
	100.0	328.0	15.230	59.41	66.8	3.7	
	125.0	410.0	17.620	63.72	95+6	5.2	
- 1	150.0	492.0	18.490	65.28	34.8	1.9	
	175.0	574 . 0	20.010	68.02	60.8	3.3	
	200.0	656.0	20+890	69.60	35+2	1.9	
	225.0	738.0	22+490	72.48	64+0	3.5	
	250.0	820.0	24.040	75.27	62.0	3.4	
	275.0	902.0	25.510	77.92	58.8	3.2	
The same data below the same	300.0	984+0	26+480	79.66	38+8	2.1	

Lacy.	TION:	DESC	TES	C0,	OREGON
	NUMBE				A A

-

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F1
10.0	32.8	9.660	49.39	• 0	• 0
15.0	49.2	9.950	49.91	58.0	3.2
50.0	65+6	10.230	50.41	56+0	3.1
25.0	82.0	10.580	51.04	70.0	3.8
30.0	98.4	10.780	51.40	40.0	5.5
35.0	114.8	11.050	51.89	54.0	3.0
40,0	131.2	11.310	52.36	52.0	2.9
45.0	147.6	11.530	52.75	44.0	2.4
50.0	164.0	11.710	53.08	36.0	2.0
55.0	180.4	11.890	53.40	36.0	2.0
50.0	196.8	12.080	53.74	38.0	2.1
55.0	213.2	12.280	54.10	40.0	5.5
70.0	229.6	12.420	54.36	28.0	1.5
75+0	246.0	12.580	54.64	32.0	1.8
80+0	262.4	12.750	54.95	34.0	1.9
85.0	278.8	12.910	55+24	32.0	1.8
90.0	2.065	13.080	55.54	34.0	1.9
95.0	311.6	13.250	55.85	34.0	1.9
100.0	328-0	13.420	56.16	34.0	1.9
105.0	344.4	13.580	56.44	32.0	1.8
110.0	360.8	13.720	56.70	28.0	1.5
115.0	377.2	13.880	56.98	32.0	1.8
120.0	393.6	14.070	57.33	38.0	2•1
125.0	410.0	14.280	57.70	42.0	2.3

DEPTH	DEPTH	TEMPER	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 F
5.0	16•4	9•550	49.19	•0	•0
7.5	24.6	9.480	49.06	-28.0	-1.5
10.0	32.8	9+750	49.55	108.0	5.9
12.5	41.0	9.915	49.85	56.0	3.6
15.0	49.2	10.035	50.06	48.0	2.6
17.5	57.4	10.160	50.29	50.0	2.7
20.0	65.6	10.295	50.53	54.0	3.0
22.5	73.8	10.420	50.76	50.0	2.7
25.0	82.0	10.560	51.01	56.0	3+1
27.5	90•2	10.695	51.25	54.0	3.0
30.0	98.4	10.835	51.50	56+0	3•1
32.5	106.6	10.965	51.74	52.0	5.9
35.0	114.8	11.095	51.97	52•O	2.9
37.5	123.0	11.225	52.20	52.0	2.9
40.0	131.2	11.350	52.43	50.0	2.7
42.5	139•4	11.470	52.65	48.0	2.6
45.0	147.6	11.610	52.90	56.0	3.1
47.5	155•8	11.750	53.15	56.0	3•1
50.0	164.0	11.885	53.39	54.0	3.0
52.5	172.2	12.010	53.62	50.0	2.7
55.0	180•4	12.150	53.87	56.0	3+1
57.5	188.6	12.290	54.12	56+0	3+1

LUCAT	I		SHU	ce,	BREGAN	
HOLE	N			25	58	
LATE						

	DERTH	DEPTH	TEMPE	RATURE	GEOTHERMAL GRADIENT			
	METERS	FEET	DEG C	DEG	DEG C/KM	DEG F/100 F1		
	10+0	32.3	7.350	45.23	• 0	• 0		
	t2+5	41.0	7.382	45.28	12.0	•7		
	15.0	49.2	7.450	45 • 41	28.0	1.5		
	17.5	57.4	7.510	45.52	24.0	1.3		
	50.0	65.6	7.580	45.64	28.0	1.5		
	22.5	73.3	7.700	45.86	+8.0	2.5		
	25-5	-2.0	7.770	45.99	28.0	1.5		
	27+5	90.2	7.840	46 • 11	28.0	1.5		
	30.0	98.4	7.990	46.38	50.0	3.3		
	32-5	105.6	8.180	46.72	76.0	4.2		
10 Y Y Y Y	.454.3	114.3	3.340	+7.01	54.0	3.5		

		100 • 0	145.0	135.0	130.0	120.0	115.0	100.0	100-0	95.0 95.0	85.0	80•0	C-02	50. 50. 00.	55-0	50.0	470-C	301 - 21	0.05	200.0	20.0	10.0	DEDTH	HOLE NUMBI
		2.00 2.00 2.04	475-6	442.0	426.4	410.0	377.2	344.4	328.0	295.2	278.8	246.0	5-625	196•8 213•2	180.4	164.0	147.6	114.8	98.4	82.0	4.04 9.04 9.04	32•8	DEPTH FEET	ABER: 215 15E 1 ABER: 215 15E 1 ASURED: 8/17/76
		14•330 14•460	14.060	13.410	13.130	12.610	12.380	11-860	11-590	11.040	10.740	10.180	0.66.6	C92.6	9.400	9.200	080.6	C96.8	8•71J	8.010	8.310	8•250	TEMPER DEG C	LOAB
		57•79	57.31	56.14	55.63	54.70	54.28		52.86	52.41	51.33	50.32	49.87	49.07	48.92	48.05	48.34	48.13	47.58	47.32	40.96	46.85	RATURE DEG F	
		52.00	64•0	0.90	52.0	46.0	50.0	04.0	0.05	0•02 0	62.0		34•0	36•0	40•0	124.0	18.0	50.0	40.0	104 · O	12.0	•0	GEOTHERMAL DEG CZKM D	
		ง	ω. υι		6.2 6	ານ ານ • • ຍັບ	うい い い		2.7	ພ ພ ພ ພ	3•4	2.7	1.9		2.2	1.3	1.0		2•2			÷	L GRADIENT DEG F/100 FT	

A-9

	BER: 218 17E 1 SURED: 8/03/76)	
DEPTH	DEPTH	TEMPE	RATURE	GEOTHERMA	L GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F
7.5	24.6	8.300	46.94	•0	•0
10.0	32.8	8 • 430	47 • 17	52•0	2.9
12.5	41.0	9.050	48.24	236.0	13.0
15.0	49.2	9.190	48.54	68.0	3.7
17·5 20·0	57•4 65•6	9•520 9•810	49•14 49•66	132•0 116•0	5.4
22.5	73.8	10.120	50.55	124.0	6.8
25+0	82.0	10.400	50.72	112.0	6.1
27.5	90.2	10.670	51.21	138.0	5.9
30.0	98.4	10.930	51.67	134.0	5.7
32.5	106.6	11.530	52.21	120.0	5.6
35.0	114.8	11 • 450	52.61	38•0	4 • 8
37.5	123.0	11.760	53.17	124.0	6.8
40.0	131-2	12.030	53.65	108.0	5.9
42.5	139.4	12.230	54.01	80.0	4 • 4 4 • 6
45.0	<u>147.6</u> 155.8	12.440	<u>54•39</u> 54•75	84•0	4 • 4
50+0	164+0	12.840	55.08	72.0	4 • 0
55.0	180.4	13.230	55.81	82.0	4.5
60.0	196.8	13.730	56.71	100.0	5.5
65.0	213.2	14+230	57.61	100.0	5.5
70.0	229.6	14.680	58.42	90•0	4.9
75.0	246.0	15.090	59.16	32•0	4.5
80.0	262.4	15.450	59.81	72.0	4 • 0
85.0	278.8	15.820	60.48	74•0	4 • 1 4 • 1
90.0	295•2	16•190	61•14	74•0	4.1
	D				
		10 6			
					3
					N.F. A
		and the second sec			
					- where -
	4. 				

LUCATION: FREDRICK B. LLG. UREGUN 215/19E-12D HOLE NUMBER: BR-75-24 DATE MEASURED: 10/ 2/75

DEPTH	DEPTH	TEMPE	RATURE	GENTHERMA	GRADIENT
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
2.5	8.2	11.680	53.02	•0	•0
5.0	16.4	9.580	49.24	-840.0	-46.1
7.5	24.6	8.860	47.95	-238-0	-15.8
10.0	32.8	9.020	48.24	64.0	3.5
12.5	41.0	9.255	48.66	94.0	5+2
15.0	49.2	9.410	48.94	62.0	3.4
17.5	57.4	9.630	49.33	88.0	4.8
20.0	65.6	9.860	49.75	92.0	5+0
22.5	73.8	9.965	49.94	42.0	2.3
25.0	82.0	10.055	50.10	36.0	2.0
27.5	90.2	10.170	50.31	46.0	2.5
30.0	98+4	10.285	50.51	46.0	2.5
32.5	106.6	10.465	50+84	72.0	4.0
35.0	114.8	10.680	51.22	86.0	4.7
37.5	123.0	10.920	51.66	96.0	5.3
40.0	131.2	11.165	52.10	98.0	5•4
42.5	139.4	11.450	52.61	114.0	6.3
45.0	147.6	11.785	53.21	134+0	7 • 4
47.5	155.8	12.125	53.82	136.0	7.5
50.0	164•0	12.345	54.22	88•0	4.8
52.5	172.2	12.590	54.66	98•0	5•4
55.0 57.5	180•4 188•6	12.860	55.15	108.0	5•9 3•8
60+0	196+8	13.035 13.230	55.46	70•0 78•0	4.3
50.0	190+0	13.530	22+01	/8+0	4.5
		A-11	÷		

LOCATION: GLASS BUTTES LEG, OREGON 215/23E-26C HOLE NUMBER: BR-75-18 DATE MEASURED: 9/30/75

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
5.0	16•4	11•055	51.90	•0	•0
7.5	24.6	11.020	51.84	-14.0	8
10.0	32.8	11.340	52.41	128.0	7.0
12.5	41.0	11.500	52.70	64.0	3.5
15.0	49.2	11.605	52.89	42.0	2.3
17.5	57.4	11.735	53.12	52.0	2.9
20.0	65.6	11.880	53.38	58.0	3.2
22.5	73.8	12.000	53.60	48.0	2.6
25.0	82.0	12.100	53.78	40.0	2.2
27.5	90.2	12.195	53.95	38.0	2.1
30.0	98.4	12.295	54.13	40.0	2.2
32.5	106.6	12.395	54.31	40.0	2.2
35.0	114.8	12.500	54.50	42.0	2.3
37.5	123.0	12.605	54.69	42.0	2.3
40.0	131.2	12.705	54.87	40.0	5.5
42.5	139.4	12.810	55.06	42.0	2.3
45.0	147.6	12.905	55.23		2.1
47.5	155.8	13.005	55.41	38•0 40•0	2.2
50.0	164.0	13.105	and the second se	-	
52.5			55.59	40.0	2.2
55.0	172.2	13.205	55.77	40.0	2.2
57.5	180•4 188•6	13.310	55.96	42.0	2•3
60.0	196.8	13•410 13•515	56•14 56•33	40•0 42•0	2.3
-				and in the second	
	1.00 k	n.		Andreas and the statement	
				-	
			1 22 - O	ia regu	ante antenno sun
		ana		A. 1.14	(annual of the state of the second se

- i+

	LECATIS	N: DESCHOTES CO, CH-RDH	BREGON			
	HS: F NU	MBER: 225 14E 340				
	DATE ME	ASURED: 8/04/76				
	DATE TE	A30R201 0701770				
	DEPTH	DEPTH	TEMPE	RATURE	GEATHERM	AL GRADIENT
	METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
			540 0	000		
	10.0	32.8	5.500	41.52	•0	•0
	12.5	41.0	5.490	41.88	80.0	4•4
	15.0	49.2	5.570	42.03	32.0	1.8
	17.5	57 • 4	5.600	42.08	12.0	•7
	50.0	65.6	5.590	42.06	-4.0	-•5
	22.5	73.8	5.600	42.08	4.0	•2
	25+0	82.0	5.610	42.10	4.0	•2
	27.5	90.2	5.640	42.15	12.0	•7
	30.0	98.4	5.650	42.17	4.0	•2
	32.5	106.6	5.640	42.15	-4.0	2
-	35.0	114.8	5.610	42.10	-12.0	-•7
	37.5	123.0	5.600	42.08	-4.0	-•2
	40.0	131.2	5.590	42.05	-4.0	2
-	42.5	139.4	5.590	42.06	•0	•0
	45.0	147.6	5.600 .	42.08	4.0	•2
	47.5	155.8	5.600	42.08	•0	• 0
	50.0	164.0	5.620	42.12	8.0	• 4
	52.5	172.2	5.620	42.12	•0	• 0
	55.0	180.4	5.640	42.15	8.0	• 4
	57.5	188.6	5.660	42.19	8.0	• 4
	60.0	196.8	5.680	42.22	8.0	• 4
	62.5	205.0	5.700	42.26	8.0	• 4
	65.0	213.2	5.720	42.30	8.0	• 4
	67.5	221.4	5.750	42.35	12.0	•7
						•7
	70.0	229.6	5.780	42.40	12.0	• /

SCATION: DESCHUTES CO. OREGON

221	QM-ROH				
HOLE NUM	BER: 225 15E 3	BAD			
 DATE MEA	SURED: 8/04/76	ò			
DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
 METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
10.0	32+8	6•930	44•47	• 0	• 0
12.5	41.0	7.050	44.69	48.0	2.6
15.0	49.2	7.150	44.87	40.0	2.2
17.5	57.4	7.170	44.91	8.0	• 4
20.05	55.6	7.210	44.98	16.0	•9
22.5	73.8	7.300	45.14	36.0	2.0
25.0	32.0	7.330	45.19	12.0	• 7
27.5	90.2	7.340	45.21	4.0	•2
30.0	98.4	7.440	45.39	40.0	5.5
32.5	106.6	7.440	45.39	•0	• 0
 35.0	114.8	7.470	45.45	12.0	•7
37.5	123.0	7.590	45.66	48.0	2.6
40.0	1:31 . 2	7.620	45.72	12.0	•7

LOCATION: FREDRICK B. LEG, OREGON 225/19E-5CC HOLE NUMBER: BR-75-27 DATE MEASURED: 10/ 2/75

DEPTH	DEPTH	TEMPEI	RATURE	GEOTHERM	AL GRADIENT	
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT	r'
2.5	8•2	12•780	55.00	•0	• 0	
5.0	16.4	10.045	50.08	-1094.0	-60.0	
7.5	24.6	9.155	48.48	-356+0	-19.5	
10.0	32.8	9.265	48.68	44.0	2.4	
12.5	41.0	9.495	49.09	92.0	5.0	
15.0	49.2	9.730	49.51	94.0	5.2	10
17.5	57 • 4	9.905	49.83	70.0	3.8	
20.0	65.6	10.080	50.14	70.0	3.8	
22.5	73.8	10.240	50.43	64.0	3.5	
25.0	82.0	10.400	50.72	64.0	3.5	
27.5	90.2	10.590	51.06	76.0	4.2	
30.0	98.4	10.700	51.26	44+0	2.4	
32.5	106.6	10.825	51.48	50.0	2.7	
35.0	114.8	10.960	51.73	54.0	3.0	
37.5	123.0	11.170	52.11	84.0	4•6	

- -

LOCATION: DESCHUTES CO,OREGON FBE-RDH HOLE NUMBER: 225 19E 32AD DATE MEASURED: 8/03/76

	DEPTH	DEPTH	TEMPE	RATURE	GEBTHERM	AL GRADIENT
	METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
	10.3	32.8	9•030	48.25	• 0	• 0
	12.5	41.0	9.330	48.79	120.0	6.6
	15.0	49.2	9.510	49.12	72+0	4•0
	17.5	57.4	9.620	49.32	44.0	2.4
	50.0	55.6	9.700	49.46	32.0	1.8
	22.5	73.8	9.810	49.66	44.0	2.4
	25.0	32.0	9.930	49.87	48.0	2.6
A	27.5	30.2	10.020	50.04	36•0	5.0
	30.0	98.4	10.120	50.22	40.0	2.2
	32.5	106.6	10.220	50.40	40.0	2.2
	35.0	114.8	10.310	50.56	36•0	5.0
	37.5	123.0	10.400	50.72	36.0	2.0
	40.0	131.2	10.560	51.01	54.0	3.5
	42.5	139.4	10.730	51.31	58.0	3.7
	45.0	147.6	11.060	51.91	132.0	7.2
	47.5	155.8	11.320	52.38	104.0	5.7
	50.0	164.0	11.470	52.65	60.0	3•3
LOCATION: GLASS BUTTES LEG, OREGON 225/23E-14CB HOLE NUMBER: BR-75-19 DATE MEASURED: 9/30/75

DEPTH	DEPTH	TEMPERA			AL GRADIENT
METERS	FEET	DEG Ç	DEG F	DEG C/KM	DEG F/100 FT
5.0	16.4	10.190	50+34	•0	•0
7.5	24.6	10.235	50.42	18.0	1.0
10.0	32.8	10.630	51.13	158.0	8.7
12.5	41.0	10.850	51.53	88.0	4.8
15.0	49.2	11.000	51.80	60.0	3.3
17.5	57.4	11.155	52.08	62.0	3.4
19.0	62•3	11•150	52.07	•3•3	••2
anna an anna ann ann an c			1000 1 1 10 - 100 Autom		
ena englat a benni i fra			19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2		
ACATIO	NI. DUDNIC. ADE	CAN			
-	N: BURNS, ORE 225/32E-34				
HOLE NU	225/32E-34 MBER: DR-1	çç			
HOLE NU	225/32E-34	çç			
HOLE NU DATE ME	225/32E-34 MBER: DR-1 ASURED: 6/11/	CC 75			
HOLE NU DATE ME DEPTH	225/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH	CC 75 TEMP	ERATURE		RMAL GRADIENT
HOLE NU DATE ME	225/32E-34 MBER: DR-1 ASURED: 6/11/	CC 75	ERATURE DEG F	GE®THE Deg c/km	
HOLE NU DATE ME DEPTH METERS 5.0	225/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16•4	CC 75 TEMP DEG C 17•040	DEG F	DEG C/KM	DEG F/100 F
HOLE NU DATE ME DEPTH METERS 5.0 10.0	225/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8	CC 75 TEMP DEG C 17.040 20.590	62.67 69.06	DEG C/KM +0 710+0	0 0 0 39•0
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0	225/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2	CC 75 TEMP DEG C 17.040 20.590 25.150	0EG F 62•67 69•06 77•27	DEG C/KM +0 710+0 912+0	0 0 39•0 50•0
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0	225/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080	DEG F 62.67 69.06 77.27 78.94	DEG C/KM •0 710•0 912•0 186•0	DEG F/100 F .0 39.0 50.0 10.2
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100	DEG F 62.67 69.06 77.27 78.94 78.98	DEG C/KM *0 710*0 912*0 186*0 4*0	DEG F/100 F 39:0 50:0 10:2 •2
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100 26.140	DEG F 62.67 69.06 77.27 78.94 78.98 79.05	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100 26.140 26.200	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0 12*0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100 26.140 26.200 26.250	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0 12*0 10*0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100 26.140 26.200 26.250 26.360	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0 12*0 10*0 22*0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5 1.2
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100 26.140 26.200 26.250 26.360 26.480	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.66	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0 12*0 10*0 22*0 24*0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5 1.2 1.3
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4	CC 75 TEMP DEG C 20•590 25•150 26•080 26•100 26•140 26•200 26•250 26•360 26•360 26•480 26•550	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.66 79.79	DEG C/KM *0 710+0 912+0 186+0 4+0 8+0 12+0 10+0 22+0 24+0 14+0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5 1.2 1.3 .8
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100 26.140 26.200 26.250 26.360 26.360 26.350 26.480 26.550 26.610	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.66 79.79 79.90	DEG C/KM *0 710+0 912+0 186+0 4+0 8+0 12+0 10+0 22+0 24+0 14+0 12+0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5 1.2 1.3 .8 .7
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 213.2	CC 75 TEMP DEG C 17.040 20.590 25.150 26.080 26.100 26.140 26.250 26.250 26.360 26.360 26.480 26.550 26.610 26.790	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.45 79.66 79.79 79.90 80.22	DEG C/KM +0 710+0 912+0 186+0 4+0 8+0 12+0 10+0 22+0 24+0 14+0 12+0 36+0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5 1.2 1.3 .8 .7 2.0
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 213.2 229.6	CC 75 TEMP DEG C 20.590 25.150 26.080 26.100 26.140 26.250 26.250 26.360 26.360 26.480 26.550 26.480 26.550 26.610 26.790 26.880	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.45 79.66 79.79 79.90 80.22 80.38	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0 12*0 10*0 22*0 24*0 14*0 12*0 36*0 18*0	DEG F/100 F .0 39:0 50:0 10:2 .2 .4 .7 .5 1:2 1:3 .8 .7 2:0 1:0
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 213.2 229.6 246.0	CC 75 TEMP DEG C 20.590 25.150 26.080 26.100 26.140 26.200 26.250 26.360 26.360 26.480 26.550 26.480 26.550 26.610 26.790 26.880 27.010	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.45 79.66 79.79 79.90 80.22 80.38 80.62	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0 12*0 10*0 22*0 24*0 14*0 12*0 36*0 18*0 26*0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5 1.2 1.3 .8 .7 2.0 1.0 1.4
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 213.2 229.6	CC 75 TEMP DEG C 20.590 25.150 26.080 26.100 26.140 26.200 26.250 26.360 26.480 26.550 26.480 26.550 26.610 26.550 26.610 26.880 27.010 27.050	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.66 79.79 79.90 80.22 80.38 80.62 80.69	DEG C/KM +0 710+0 912+0 186+0 4+0 8+0 12+0 10+0 22+0 24+0 14+0 12+0 36+0 18+0 26+0 8+0	DEG F/100 F .0 39:0 50:0 10:2 .2 .4 .7 .5 1:2 1:3 .8 .7 2:0 1:0
HOLE NU DATE ME DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0	22S/32E=34 MBER: DR=1 ASURED: 6/11/ DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 213.2 229.6 246.0 262.4	CC 75 TEMP DEG C 20.590 25.150 26.080 26.100 26.140 26.200 26.250 26.360 26.360 26.480 26.550 26.480 26.550 26.610 26.790 26.880 27.010	DEG F 62.67 69.06 77.27 78.94 78.98 79.05 79.16 79.25 79.45 79.45 79.66 79.79 79.90 80.22 80.38 80.62	DEG C/KM *0 710*0 912*0 186*0 4*0 8*0 12*0 10*0 22*0 24*0 14*0 12*0 36*0 18*0 26*0	DEG F/100 F .0 39.0 50.0 10.2 .2 .4 .7 .5 1.2 1.3 .8 .7 2.0 1.0 1.4 .4

the survey of the survey of the line (the survey of the survey of the survey of the survey of the

$10 \cdot 0$ $32 \cdot 8$ $8 \cdot 760$ $47 \cdot 77$ $\cdot 0$ $\cdot 15 \cdot 0$ $15 \cdot 0$ $49 \cdot 2$ $9 \cdot 150$ $48 \cdot 47$ $78 \cdot 0$ $4 \cdot 20 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $9 \cdot 520$ $49 \cdot 14$ $74 \cdot 0$ $4 \cdot 25 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $9 \cdot 520$ $49 \cdot 14$ $74 \cdot 0$ $4 \cdot 25 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $3 \cdot 3 \cdot 3$ $30 \cdot 3$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $2 \cdot 35 \cdot 0$ $35 \cdot 0$ $114 \cdot 8$ $10 \cdot 330$ $50 \cdot 59$ $50 \cdot 0$ $2 \cdot 4 \cdot 0 \cdot 33 \cdot 0$ $4 \cdot 0 \cdot 1$ $147 \cdot 6$ $10 \cdot 930$ $51 \cdot 67$ $82 \cdot 0$ $4 \cdot 0 \cdot 35 \cdot 0$ $50 \cdot 0$ $147 \cdot 6$ $10 \cdot 930$ $51 \cdot 67$ $82 \cdot 0$ $4 \cdot 50 \cdot 0$ $50 \cdot 0$ $164 \cdot 0$ $11 \cdot 540$ $52 \cdot 77$ $122 \cdot 0$ $6 \cdot 55 \cdot 0$ $50 \cdot 0$ $196 \cdot 8$ $12 \cdot 600$ $54 \cdot 68$ $92 \cdot 0$ $5 \cdot 6 \cdot 55 \cdot 0$ $50 \cdot 0$ $213 \cdot 2$ $13 \cdot 050$ $55 \cdot 49$ $90 \cdot 0$ $4 \cdot 70 \cdot 0$ $75 \cdot 0$ $246 \cdot 0$ $13 \cdot 810$ $56 \cdot 856$ $48 \cdot 0$ $2 \cdot 80 \cdot 0$ $80 \cdot 0$ $262 \cdot 4$ $14 \cdot 080$ $57 \cdot 34$ $54 \cdot 0$ $3 \cdot 85 \cdot 78$ $80 \cdot 0$ $278 \cdot 8$ $14 \cdot 310$ $57 \cdot 76$ $46 \cdot 0$ $2 \cdot 105 \cdot 0$ $90 \cdot 0$ $278 \cdot 8$ $14 \cdot 310$ $57 \cdot 76$ $46 \cdot 0$ $2 \cdot 105 \cdot 0$ $90 \cdot 0$ $238 \cdot 0$ $15 \cdot 080$ $59 \cdot 14$ $40 \cdot 0$ $2 \cdot 105 \cdot 0$ <t< th=""><th></th><th>ER: 23S 19E 5 URED: 3/03/76</th><th></th><th></th><th></th><th></th></t<>		ER: 23S 19E 5 URED: 3/03/76				
METERSFEETDEG CDEG FDEG C/KMDEG F/1 $10 \cdot C$ $32 \cdot 8$ $8 \cdot 760$ $47 \cdot 77$ $\cdot 0$ \cdot $15 \cdot 0$ $49 \cdot 2$ $9 \cdot 150$ $48 \cdot 47$ $78 \cdot 0$ $4 \cdot 20 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $9 \cdot 520$ $49 \cdot 14$ $74 \cdot 0$ $4 \cdot 25 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $3 \cdot 3$ $30 \cdot 3$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $2 \cdot 4 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $3 \cdot 3 \cdot 3$ $30 \cdot 3$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $2 \cdot 4 \cdot 0$ $35 \cdot 0$ $114 \cdot 8$ $10 \cdot 330$ $50 \cdot 59$ $50 \cdot 0$ $2 \cdot 4 \cdot 3 \cdot 50 \cdot 20 \cdot 20 \cdot 20 \cdot 20 \cdot 20 \cdot 20 \cdot 20$	DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
$15 \cdot 0$ $49 \cdot 2$ $9 \cdot 150$ $48 \cdot 47$ $78 \cdot 0$ $4 \cdot 20 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $9 \cdot 520$ $49 \cdot 14$ $74 \cdot 0$ $4 \cdot 25 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $30 \cdot 3$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $30 \cdot 3$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $35 \cdot 0$ $114 \cdot 8$ $10 \cdot 330$ $50 \cdot 59$ $50 \cdot 0$ $4 \cdot 0$ $114 \cdot 8$ $10 \cdot 330$ $50 \cdot 59$ $50 \cdot 0$ $4 \cdot 0$ $147 \cdot 6$ $10 \cdot 930$ $51 \cdot 67$ $82 \cdot 0$ $45 \cdot 0$ $147 \cdot 6$ $10 \cdot 930$ $51 \cdot 67$ $82 \cdot 0$ $50 \cdot 0$ $164 \cdot 0$ $11 \cdot 540$ $52 \cdot 77$ $122 \cdot 0$ $55 \cdot 0$ $180 \cdot 4$ $12 \cdot 140$ $53 \cdot 85$ $120 \cdot 0$ $55 \cdot 0$ $213 \cdot 2$ $13 \cdot 050$ $55 \cdot 49$ $90 \cdot 0$ $4 \cdot 70 \cdot 0$ $229 \cdot 6$ $13 \cdot 810$ $56 \cdot 85$ $48 \cdot 0$ $75 \cdot 0$ $246 \cdot 0$ $13 \cdot 810$ $56 \cdot 85$ $48 \cdot 0$ $80 \cdot 0$ $262 \cdot 4$ $14 \cdot 080$ $57 \cdot 34$ $54 \cdot 0$ $80 \cdot 0$ $295 \cdot 2$ $14 \cdot 600$ $58 \cdot 28$ $38 \cdot 0$ $90 \cdot 0$ $295 \cdot 2$ $14 \cdot 600$ $58 \cdot 28$ $38 \cdot 0$ $90 \cdot 0$ $328 \cdot 0$ $15 \cdot 080$ $59 \cdot 68$ $60 \cdot 0$ $105 \cdot 0$ $344 \cdot 4$ $15 \cdot 380$ $59 \cdot 68$ $60 \cdot 0$ $100 \cdot 0$ $328 \cdot 0$	METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F1
$15 \cdot 0$ $49 \cdot 2$ $9 \cdot 150$ $48 \cdot 47$ $78 \cdot 0$ $4 \cdot 20 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $9 \cdot 520$ $49 \cdot 14$ $74 \cdot 0$ $4 \cdot 25 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $30 \cdot 2$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $30 \cdot 2$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $2 \cdot 0$ $31 \cdot 2$ $10 \cdot 520$ $50 \cdot 94$ $38 \cdot 0$ $4 \cdot 0$ $114 \cdot 8$ $10 \cdot 330$ $50 \cdot 59$ $50 \cdot 0$ $4 \cdot 50 \cdot 0$ $147 \cdot 6$ $10 \cdot 930$ $51 \cdot 67$ $82 \cdot 0$ $50 \cdot 0$ $164 \cdot 0$ $11 \cdot 540$ $52 \cdot 77$ $122 \cdot 0$ $55 \cdot 0$ $180 \cdot 4$ $12 \cdot 600$ $54 \cdot 68$ $92 \cdot 0$ $55 \cdot 0$ $213 \cdot 2$ $13 \cdot 050$ $55 \cdot 49$ $90 \cdot 0$ $4 \cdot 70 \cdot 0$ $229 \cdot 6$ $13 \cdot 810$ $56 \cdot 85$ $48 \cdot 0$ $75 \cdot 0$ $246 \cdot 0$ $13 \cdot 810$ $56 \cdot 85$ $48 \cdot 0$ $80 \cdot 0$ $262 \cdot 4$ $14 \cdot 080$ $57 \cdot 34$ $54 \cdot 0$ $80 \cdot 0$ $278 \cdot 8$ $14 \cdot 310$ $57 \cdot 76$ $46 \cdot 0$ $20 \cdot 0$ $295 \cdot 2$ $14 \cdot 600$ $58 \cdot 28$ $38 \cdot 0$ $31 \cdot 6$ $14 \cdot 880$ $58 \cdot 78$ $56 \cdot 0$ $3 \cdot 100 \cdot 0$ $105 \cdot 0$ $344 \cdot 4$ $15 \cdot 380$ $59 \cdot 68$ $60 \cdot 0$ $100 \cdot 0$ $328 \cdot 0$ $15 \cdot 620$ $60 \cdot 12$ $48 \cdot 0$ $2 \cdot 100 \cdot 32 \cdot 32 \cdot 32 \cdot 32 \cdot 32 $	10.0	32.8	8.760	47.77	•0	• 0
$20 \cdot 0$ $65 \cdot 6$ $9 \cdot 520$ $49 \cdot 14$ $74 \cdot 0$ $4 \cdot 25 \cdot 0$ $25 \cdot 0$ $82 \cdot 0$ $9 \cdot 860$ $49 \cdot 75$ $68 \cdot 0$ $3 \cdot 3 \cdot 3 \cdot 6 \cdot 14$ $30 \cdot 3$ $98 \cdot 4$ $10 \cdot 080$ $50 \cdot 14$ $44 \cdot 0$ $2 \cdot 3 \cdot 5 \cdot 14$ $35 \cdot 0$ $114 \cdot 8$ $10 \cdot 330$ $50 \cdot 59$ $50 \cdot 0$ $2 \cdot 4 \cdot 0 \cdot 2 \cdot 131 \cdot 2 \cdot 10 \cdot 520$ $50 \cdot 94$ $40 \cdot 0$ $131 \cdot 2$ $10 \cdot 520$ $50 \cdot 94$ $38 \cdot 0$ $2 \cdot 4 \cdot 0 \cdot 2 \cdot 131 \cdot 2 \cdot 10 \cdot 520$ $51 \cdot 67$ $82 \cdot 0$ $45 \cdot 0$ $147 \cdot 6$ $10 \cdot 930$ $51 \cdot 67$ $82 \cdot 0$ $4 \cdot 50 \cdot 0 \cdot 144 \cdot 0 \cdot 11 \cdot 540$ $52 \cdot 77$ $122 \cdot 0$ $6 \cdot 50 \cdot 0 \cdot 196 \cdot 8 \cdot 12 \cdot 600$ $54 \cdot 68$ $92 \cdot 0$ $5 \cdot 6 \cdot 0 \cdot 196 \cdot 8 \cdot 12 \cdot 600$ $54 \cdot 68$ $92 \cdot 0$ $5 \cdot 6 \cdot 5 \cdot 0 \cdot 213 \cdot 2 \cdot 13 \cdot 050$ $55 \cdot 49 \cdot 90 \cdot 0 \cdot 0 \cdot 4 \cdot 70 \cdot 0 \cdot 229 \cdot 6 \cdot 13 \cdot 570$ $56 \cdot 43 \cdot 120 \cdot 0 \cdot 0 \cdot 4 \cdot 70 \cdot 0 \cdot 229 \cdot 6 \cdot 13 \cdot 570$ $56 \cdot 43 \cdot 124 \cdot 0 \cdot 0 \cdot 3 \cdot 68 \cdot 6 \cdot 48 \cdot 0 \cdot 2 \cdot 77 \cdot 5 \cdot 0 \cdot 246 \cdot 0 \cdot 13 \cdot 810$ $56 \cdot 68 \cdot 48 \cdot 0 \cdot 2 \cdot 77 \cdot 5 \cdot 0 \cdot 246 \cdot 0 \cdot 13 \cdot 810$ $57 \cdot 76 \cdot 46 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 46 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 46 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 46 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 46 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 46 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 46 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 2 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 3 \cdot 77 \cdot 6 \cdot 6 \cdot 0 \cdot 2 \cdot 105 \cdot 0 \cdot 3 \cdot 5 \cdot 0 \cdot 0 \cdot 3 \cdot 5 \cdot 0 \cdot 6 \cdot 0 \cdot 5 \cdot 5 \cdot 48 \cdot 0 \cdot 2 \cdot 105 \cdot 0 \cdot 3 \cdot 77 \cdot 2 \cdot 5 \cdot 6 \cdot 6 \cdot 0 \cdot 5 \cdot 5 \cdot 48 \cdot 0 \cdot 2 \cdot 115 \cdot 0 \cdot 3 \cdot 77 \cdot 2 $						4.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					74.0	4 • 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		82.0		49.75	68.0	3.7
40.0 131.2 10.520 50.94 38.0 $2.$ 45.0 147.6 10.930 51.67 82.0 $4.$ 50.0 164.0 11.540 52.77 122.0 $6.$ 55.0 180.4 12.140 53.85 120.0 $6.$ 60.0 196.8 12.600 54.68 92.0 $5.$ 65.0 213.2 13.050 55.49 90.0 $4.$ 70.0 229.6 13.570 56.43 104.0 $5.$ 75.0 246.0 13.810 56.86 48.0 $2.$ 80.0 262.4 14.080 57.34 54.0 $3.$ 85.0 278.8 14.310 57.76 46.0 $2.$ 90.0 295.2 14.600 58.28 38.0 $3.$ 95.0 311.6 14.880 58.78 56.0 $3.$ 100.0 328.0 15.080 59.68 60.0 $3.$ 110.0 360.8 15.620 60.12 48.0 $2.$ 115.0 377.2 15.860 60.55 48.0 $2.$ 120.0 393.6 16.130 61.03 54.0 $3.$ 120.0 426.4 16.650 61.97 46.0 $2.$	30.0	98.4	the second se	50.14	44.0	2.4
45.0 147.6 10.930 51.67 82.0 $4.$ 50.0 164.0 11.540 52.77 122.0 $6.$ 55.0 180.4 12.140 53.85 120.0 $6.$ 50.0 196.8 12.600 54.68 92.0 $5.$ 55.0 213.2 13.050 55.49 90.0 $4.$ 70.0 229.6 13.570 56.43 104.0 $5.$ 75.0 246.0 13.810 56.85 48.0 $2.$ 80.0 262.4 14.080 57.34 54.0 $3.$ 85.0 278.8 14.310 57.76 46.0 $2.$ 90.0 295.2 14.600 58.28 58.0 $3.$ 95.0 311.6 14.880 58.78 56.0 $3.$ 100.0 328.0 15.080 59.14 40.0 $2.$ 105.0 344.4 15.380 59.68 60.0 $3.$ 110.0 360.8 15.620 60.12 48.0 $2.$ 115.0 377.2 15.860 60.55 48.0 $2.$ 120.0 393.6 16.130 61.03 54.0 $3.$ 120.0 426.4 16.650 61.97 46.0 $2.$	35.0	114.8	10.330	50.59	50.0	2.7
$50 \cdot 0$ $164 \cdot 0$ $11 \cdot 540$ $52 \cdot 77$ $122 \cdot 0$ $6 \cdot 6$ $55 \cdot 0$ $180 \cdot 4$ $12 \cdot 140$ $53 \cdot 85$ $120 \cdot 0$ $6 \cdot 6$ $60 \cdot 0$ $196 \cdot 8$ $12 \cdot 600$ $54 \cdot 68$ $92 \cdot 0$ $5 \cdot 6 \cdot 6$ $65 \cdot 0$ $213 \cdot 2$ $13 \cdot 050$ $55 \cdot 49$ $90 \cdot 0$ $4 \cdot 6 \cdot 6$ $70 \cdot 0$ $229 \cdot 6$ $13 \cdot 570$ $56 \cdot 43$ $124 \cdot 0$ $5 \cdot 6 \cdot $	40.0	131.2	10.520	50.94	38.0	2•1
$55 \cdot 0$ $180 \cdot 4$ $12 \cdot 140$ $53 \cdot 85$ $120 \cdot 0$ $6 \cdot 0$ $60 \cdot 0$ $196 \cdot 8$ $12 \cdot 600$ $54 \cdot 68$ $92 \cdot 0$ $5 \cdot 0$ $65 \cdot 0$ $213 \cdot 2$ $13 \cdot 050$ $55 \cdot 49$ $90 \cdot 0$ $4 \cdot 0$ $70 \cdot 0$ $229 \cdot 6$ $13 \cdot 570$ $56 \cdot 43$ $104 \cdot 0$ $5 \cdot 0$ $75 \cdot 0$ $246 \cdot 0$ $13 \cdot 810$ $56 \cdot 86$ $48 \cdot 0$ $2 \cdot 0$ $80 \cdot 0$ $262 \cdot 4$ $14 \cdot 080$ $57 \cdot 34$ $54 \cdot 0$ $3 \cdot 0$ $85 \cdot 0$ $278 \cdot 8$ $14 \cdot 310$ $57 \cdot 76$ $46 \cdot 0$ $2 \cdot 0$ $90 \cdot 0$ $295 \cdot 2$ $14 \cdot 600$ $58 \cdot 28$ $58 \cdot 0$ $3 \cdot 0$ $95 \cdot 0$ $311 \cdot 6$ $14 \cdot 880$ $59 \cdot 14$ $40 \cdot 0$ $2 \cdot 0$ $100 \cdot 0$ $328 \cdot 0$ $15 \cdot 080$ $59 \cdot 14$ $40 \cdot 0$ $2 \cdot 0$ $115 \cdot 0$ $377 \cdot 2$ $15 \cdot 860$ $60 \cdot 12$ $48 \cdot 0$ $2 \cdot 0$ $115 \cdot 0$ $377 \cdot 2$ $15 \cdot 860$ $60 \cdot 55$ $48 \cdot 0$ $2 \cdot 0$ $120 \cdot 0$ $393 \cdot 6$ $16 \cdot 130$ $61 \cdot 03$ $54 \cdot 0$ $3 \cdot 0$ $125 \cdot 0$ $410 \cdot 0$ $16 \cdot 420$ $61 \cdot 56$ $58 \cdot 0$ $3 \cdot 130 \cdot 0$ $130 \cdot 0$ $426 \cdot 4$ $16 \cdot 650$ $61 \cdot 97$ $46 \cdot 0$ $2 \cdot 0$	45.0	147.6	10.930	51.67	82.0	4 • 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.0	164.0	11.540	52.77	122.0	6.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35.0	180.4	12.140	53.85	120.0	5.5
$70 \cdot 0$ $229 \cdot 6$ $13 \cdot 570$ $56 \cdot 43$ $104 \cdot 0$ $5 \cdot 0$ $75 \cdot 0$ $246 \cdot 0$ $13 \cdot 810$ $56 \cdot 86$ $48 \cdot 0$ $2 \cdot 6 \cdot $	60.0		12.600	54.68	92•0	5.0
$75 \cdot 0$ $246 \cdot 0$ $13 \cdot 810$ $56 \cdot 86$ $48 \cdot 0$ $2 \cdot 80$ $80 \cdot 0$ $262 \cdot 4$ $14 \cdot 080$ $57 \cdot 34$ $54 \cdot 0$ $3 \cdot 85 \cdot 0$ $85 \cdot 0$ $278 \cdot 8$ $14 \cdot 310$ $57 \cdot 76$ $46 \cdot 0$ $2 \cdot 85 \cdot 0$ $90 \cdot 0$ $295 \cdot 2$ $14 \cdot 600$ $58 \cdot 28$ $58 \cdot 0$ $3 \cdot 85 \cdot 0$ $95 \cdot 0$ $311 \cdot 6$ $14 \cdot 880$ $58 \cdot 78$ $56 \cdot 0$ $3 \cdot 85 \cdot 0$ $100 \cdot 0$ $328 \cdot 0$ $15 \cdot 080$ $59 \cdot 14$ $40 \cdot 0$ $2 \cdot 100 \cdot 0$ $105 \cdot 0$ $344 \cdot 4$ $15 \cdot 380$ $59 \cdot 68$ $60 \cdot 0$ $3 \cdot 100 \cdot 0$ $110 \cdot 0$ $360 \cdot 8$ $15 \cdot 620$ $60 \cdot 12$ $48 \cdot 0$ $2 \cdot 100 \cdot 100$	65.0	213.2	13.050	55.49	90.0	4.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70.0	553.6		56 • 43	104.0	5.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75.0	246.0	13.810	56.85	48.0	5.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80.0	262.4	14.080	57.34	54.0	3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85.0	278.8	14.310		46.0	2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		295.2	14.600		58•0	3.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95.0			58.78	56•0	3 • 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					40.0	5.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15.380	59.68	60.0	3•3
120.0 393.6 16.130 61.03 54.0 3. 125.0 410.0 16.420 61.56 58.0 3. 130.0 426.4 16.650 61.97 46.0 2.			15.620	60.12	48.0	2.6
125.0 410.0 16.420 61.56 58.0 3. 130.0 426.4 16.650 61.97 46.0 2.	115.0	and the second sec	15.860	and the second sec	the set of	2.6
130.0 426.4 16.650 61.97 46.0 2.		393.6	16.130	61.03	54•0	3.0
	125.0	410.0	16.420	61.56	58.0	3.2
135.0 442.8 16.870 62.37 44.0 2.	130.0	the second se	16.650	61.97	46.0	2•5
	135.0	442.8	16.870	62.37	44•0	2•4
						2.9

LOLATION: GLASS BUTTES LEG, OREGON 235/23E-18C HOLE NUMBER: BR-75-21 DATE MEASURED: 9/30/75

METERS			RATURE		L GRADIENT
	FEET	DEG Ç	DEG F	DEG C/KM	DEG F/100 FT
5•0	16•4	11.040	51.87	•0	•0
7.5	24.6	10.895	51.61	-58.0	-3.2
10.0	32.8	11.350	52.43	182.0	10.0
12.5	41.0	11.670	53.01	128.0	7.0
15.0	49.2	11.950	53.51	112.0	6 • 1
17.5	57.4	12.290	54.12	136.0	7.5
20.0	65.6	12.620	54.72	132.0	7.2
22.2	73.8	12.980	55•36	144.0	7.9
25.0	82.0	13.390	56.10	164•0	9.0
27.5	90.2	13.690	56+64	120.0	6.6
30.0	98.4	14 • 105	57•39	166•0	9•1
32+5	106.6	14.610	58.30	505.0	11.1
35.0	114.8	15.080	59.14	188•0	10.3
37•5	123.0	15 • 440	59•79	144•0	7•9
40.0	131.2	15.780	60.40	136•0	7.5
42.5	139.4	16.095	60.97	126.0	6.9
45.0	147.6	16.425	61.56	132.0	7.2
47.5	155.8	16.760	62.17	134•0	7.4
50.0	164.0	17.100	62.78	136.0	7•5
52.5	172.2	17 • 440	63.39	136.0	7•5
55.0	180•4	17.780	64.00	136•0	7.5
57.5	188.6	18.095	64 • 57	126.0	6.9
60.0	196.8	18 • 430	65•17 65•73	134•0	7•4
a a manager company and the first					
· · · · · · · · · · · · · · · · · · ·					
					· · ·
					-
					-
					-
					-
					-
					-
					-
					-
					-

1

DEPTH	DEPTH	TEMOE	RATURE	CENTUERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F
10.0	32.8	8.680	47.62	•0	• 0
50.0	65.6	9.600	49.28	92•0	5.0
30.0	98.4	10 • 440	50.79	84.0	4.6
32.5	106.6	10.470	50.85	12.0	•7
35.0	114.8	10.490	50.88	8.0	• 4
37.5	123.0	10.540	50.97	20.0	1 • 1
40.0	131.2	10.570	51.03	12.0	•7
42.5	139.4	10.590	51.06	8.0	• 4
45.0	147.6	10.610	51.10	8.0	• 4
47.5	155.8	10.630	51.13	8.0	• 4
50+0	164.0	10.650	51 • 17	8•0	• 4
55.0	180.4	10.710	51.28	12.0	•7
50.0	196.8	10.800	51.44	18.0	1.0
65.0	213.2	10.970	51.75	34.0	1.9
70.0	229.6	11.110	52.00	28.0	1.5
75.0	246.0	11.310	52.36	40.0	2.2
80.0	262.4	11 • 470	52.65	32.0	1.8
85.0	278.8	11.550	52.79	16.0	• 9
90.0	295.2	11.650	52.97	20.0	1 • 1
95.0	311.6	11.880	53.38	46.0	2.5
100.0	328.0	12.200	53.96	64.0	3.5
105.0	344.4	12.620	54.72	84.0	4•6
110.0	360•8	12.970	55.35	70.0	3.8
115.0	377.2	13.300	55.94	66.0	3.6
120.0	393.6	13.570	56 • 43	54•0	3.0
125.0	410.0	14.120	57.42	110.0	6.0

	SURED: 7/09/70	5			
рертн	DEPTH	TEMPER	RATURE	GEOTHERM	AL GRADIENT
ETERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
10.0	32.8	9•490	49.08	• 0	• 0
0.03	65.6	8.840	47.91	-65.0	-3.6
30.0	98.4	9.070	48.33	23.0	1.3
32.5	106.6	9.090	48.36	-8.0	• 4
35+0	114.8	9.100	48.38	4.0	•2
37.5	123.0	9.120	48.42	8.0	• 4
40.0	131-2	9.140	48.45	8.0	• 4
42.5	139.4	9.180	48.52	16.0	•9
45.0	147.6	9.200	48.56	8.0	• 4
47.5	155.8	9.210	48.58	4.0	•2
50+0	164.0	9.210	48.58	•0	•0
55.0	180.4	9.240	48.63	6.0	• 3
50+0	196.8	9.260	48.67	4•0	•2
55.0	213.2	9.280	48.70	4•0	•2
70.0	229.6	9.310	48.76	6.0	• 3
75.0	246.0	9.330	48.79	4•0	•2
50.0	262.4	9.350	48.83	4•0	•2
15.0	278.8	9.373	48.87	4 • 0	•2
90+0	295.2	9.410	48.94	8.0	• 4
95.0	311.6	9•520	49.14	22.0	1.2
100.0	328.0	9.670	49.41	30.0	1.6
105.0	344 • 4	9.900	49.82	46.0	2.5
110.0	360.8	10.120	50.22	44•0	2•4
115.0	377.2	10-123	50.74	58.0	3.2

LOCATION: WAGONTIRE LEG, OREGON 235/28E-18D HOLE NUMBER: BR-75-12 DATE MEASURED: 9/30/75

DEPTH	DEPTH	TEMPE			AL GRADIENT
METERS	FEET	DEG Ç	DEG F	DEG C/KM	DEG F/100 FT
5.0	16•4	11.395	52.51	•0	•0
7.5	24.6	10.865	51.56	-212.0	-11.6
10.0	32.8	11.245	52.24	152.0	8.3
12.5	41.0	11.365	52.46	48.0	2.6
15.0	49.2	11.440	52.59	30.0	1.6
17.5	57.4	11.490	52.68	20.0	1.1
20.0	65.6	11.535	52.76	18.0	1.0
22.5	73.8	11.590	52.86	22.0	1.2
25.0	82.0	11.650	52.97	24.0	1.3
27.5	90.2	11.710	53.08	24.0	1.3
30.0	98.4	11.775	53.19	26.0	1 • 4
32.5	106.6	11.845	53.32	28.0	1.5
35.0	114.8	11.915	53.45	28.0	1.5
37.5	123.0	11.985	53.57	28.0	1.5
40.0	131.2	12.055	53.70	28.0	1.5
42.5	139.4	12.125	53.82	28.0	1.5
45.0	147.6	12.205	53.97	32.0	1 • 8
47.5	155.8	12.290	54.12	34.0	1.9
50.0	164.0	12.375	54.27	34.0	1.9
52.5	172.2	12.455	54.42	32.0	1 • 8
55.0	180.4	12.545	54.58	36.0	2.0
57.5	188.6	12.620	54.72	30.0	1.6
60.0	196.8	12.705	54 . 87	34.0	1.9

The second is being the

the second second second second

sectors from in contrast womane in

LOCA		881S		0REG0N 3C
HOLE	nunea			

ЕРТН	DEPTH	TEMPER	ATURE	GEOTHERM/	AL GRADIENT
ETERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
10.0	32.8	13.850	56.93	• 0	• 0
20.05	65.6	14.610	58.30	76.0	4.2
25 - 0	32.0	15.000	59.00	78.0	4 • 3
30.0	98.4	15.270	59.49	54.0	3•0
35.0	114-8	15.610	50.10	68.0	3.7
· . •	131-2	15.780	60.40	34.0	1.9
5 . 1	141.6	16.020	60.84	+8.0	2.6
50.0	164.0	16.290	61.32	54.0	3.0
55.0	180.4	16.550	61.79	52.0	5.3
60.0	196.8	16.780	62.20	46.0	5.2
65+0	213.2	17.18)	62.92	30.0	4•4
70.0	229.6	17.550	63.59	74.0	4 • 1
75-0	2+5.0	17.900	64.22	70.0	3.8
80.0	262.4	18.190	64.74	58.0	3.2
85.0	278.8	18.520	65.34	66.0	3.6
90.0	295.2	18.810	65.86	58.0	3.2
45.J	311.6	19.060	66.31	50.0	2.7
100-0	328.0	19.470	67.05	32.0	4 • 5
105.0	344 - 4	19.340	67.71	74.0	4 • 1
110.0	360.8	20.200	68.36	72.0	4.0
115.0	377.2	20.530	68.95	56.0	3.6
120.0	393.6	20.860	69.55	66•0	3.6
125.0	410.0	21.170	70.11	52.0	3.4
130.0	426.4	21.500	70.70	56.0	3.5
135.0	442.8	21.780	71.20	56.0	3•1
140.0	459.2	25.000	71.60	44.0	2.4

LOCATION: GLASS BUTTES LEG, OREGON 245/22E-2DD HOLE NUMBER: BR-75-22 DATE MEASURED: 10/ 2/75

DEPTH	DEPTH		RATURE		AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F1
2.5	8•2	13.800	56.84	•0	•0
5.0	16.4	11.340	52.41	-984.0	-54.0
7.5	24.6	11.560	52.81	88.0	4.8
10.0	32.8	11.665	53.00	42.0	2.3
12.5	41.0	12.335	54.20	268.0	14.7
15.0	49.2	12.545	54.58	84.0	4.6
17.5	57.4	12.830	55.09	114.0	6.3
20.0	65.6	13.110	55.60	112.0	6.1
22.5	73.8	13.400	56.12	116.0	6.4
25.0	82.0	13.680	56.62	112.0	6.1
27.5	90+2	13.990	57.18	124.0	6.8
30.+0	98.4	14.250	57.65	104.0	5.7
32.5	106.6	14.590	58.26	136+0	7.5
35.0	114.8	14.895	58.81	122.0	6.7
37.5	123.0	15.180	59.32	114•0	6+3
40.0	131.2	15.500	59.90	128.0	7.0
42.5	139.4	15.790	60.42	116.0	6.4
45.0	147.6	16.140	61.05	140.0	7.7
47.5	155.8	16.455	61.62	126.0	6.9
50.0	164.0	16.760	62.17	122.0	6.7
52.5	172.2	17.065	62.72	122.0	6.7
55.0	180.4	17.355	63.24	116.0	6.4
57.5	188.6	17.660	63.79	122.0	6.7
60.0	196•8	17.955	64.32	118.0	6.5

LUCATION: GLASS BUTTES LEG, OREGON 245/22E-20AA HOLE NUMBER: BR-75-23 DATE MEASURED: 10/ 2/75

DEPTH	DEPTH	TEMPEI	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
5•0	16•4	10•515	50.93	•0	•0
7.5	24.6	10.425	50.76	-36.0	-2.0
10.0	32.8	10.660	51.19	94.0	5.2
12.5	41.0	10.740	51.33	32.0	1.8
15.0	49.2	10.800	51 . 44	24.0	1.3
17.5	57•4	10.885	51.59	34.0	1.9
20.0	65.6	10.985	51.77	40.0	2.2
22.5	73.8	11.240	52.23	102.0	5.6
25.0	82.0	11.535	52.76	118.0	6.5
27.5	90.2	11.815	53.27	112.0	6.1
30.0	98.4	12.110	53.80	118.0	6.5
32.5	106.6	12.420	54.36	124.0	6.8
35.0	114.8	12.540	54.57	48.0	2.6
37.5	123.0	12.710	54.88	68.0	3.7
40.0	131.2	12.880	55.18	68.0	3.7
42.5	139.4	13.055	55.50	70.0	3.8
45•0	147.6	13.230	55+81	70.0	3.8
47.5	155+8	13.410	56.14	72.0	4.0
50.0	164.0	13.610	56.50	80.0	4 • 4
52.5	172.2	13.845	56.92	94.0	5.2
55.0	180•4	14.085	57.35	96•0	5.3
57.5	188.6	14.280	57.70	78.0	4.3
60.0	196.8	14 • 430	57.97	60.0	3.3

LOCATION: HARNEY CO, OREGON SB-ROH HOLE NUMBER: 248 25E 300 DATE MEASURED: 8/02/76

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
10.0	32.8	10.740	51.33	• 0	• 0
12.5	41.0	10.970	51.75	92.0	5.0
15.0	49.2	11.060	51.91	36.0	2.0
17.5	57.4	11.180	52.12	48.0	2.6
50.0	65.6	11.430	52.57	100.0	5.5
55.25	73.8	11.810	53.26	152.0	8.3
25.0	82.0	12.100	53.78	116.0	6 • 4
27.5	30.2	12.310	54.16	84.0	4.6
30.0	98.4	12.520	54.54	84.0	4.6
32.5	106.6	12.900	55.22	152.0	8.3
35.0	114.8	13.230	55.81	132.0	7.2
37.5	123.0	13.480	56.26	100.0	5.5
40.0	131.2	13.730	56.71	100.0	5.5
42.5	139.4	13.920	57.06	76.0	4.2
45.0	147.6	14.000	57.20	32.0	1.8
47.5	155.8	14.050	57.29	20.0	1.1
50.0	164.0	14.040	57.27	-4.0	2
52.5	172.2	14.040	57.27	•0	• 0
55.0	130.4	14.040	57.27	• 0	• 0
57.5	188.6	14.060	57.31	8.0	• 4
60.0	196.8	14.090	57.36	12.0	•7
		A-2			

	ER: 248 26E 1 URED: 8/03/76				
DEPTH	DEPTH	TEMPER	ATURE	GEOTHERMAL	GRADIENT
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
10.0	32.8	11.990	53.58	•0	• 0
20.0	65.6	12.790	55.02	80.0	4•4
30.0	98.4	13.690	56.64	90.0	4.9
40.0	131.2	14.120	57.42	43.0	2.4
50.0	164.0	14.940	58.89	32.0	4.5
55.0	130.4	15.090	59.16	30.0	1•6 3•7
50.0	196.8	15.430	59.77	58.0	3.5
65•0 70•0	213.2 229.6	15•750 16•020	60•35 60•84	54•0 54•0	3.0
75.0	246.0	16.230	61.21	42•0	2.3
30.0	262•4	16+440	61.59	42.0	2.3
85.0	273.8	16.670	62.01	46.0	2.5
90.0	295.2	16.880	62.38	42.0	2.3
95.0	311.6	17.120	62.82	48.0	2.6
100.0	328.0	17.360	63.25	48.0	2.6
105.0	344.4	17.600	63.68	48.0	2.6
110.0	360.8	17.810	64.06	42.0	2.3
115.0	317.2	18.010	64.42	40.0	5.5
120.0	393.6	18.260	64.87	50•0	2.7
125.0	410.0	18.370	65.07	22.0	1.2
130.0	426.4	18.620	65.55	50.0	2.7
135.0	442.8	18.360	65.95	48.0	2.6
140.0	459.2	19.100	66•38	48.0	2.6
145.0	475.6	19•420	66•95	54•0	3.5
10					
- A					
1	-107				an consta
ia.					
					1. 12 \$

LOCATION: WAGONTIRE LEG, OREGON 245/26E-24AC HOLE NUMBER: BR-75=13 DATE MEASURED: 9/30/75

DEPTH	DEPTH	TEMPER	RATURE	GENTHERMA	L GRADIENT
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
	a anti-anti-anti-anti-anti-anti-anti-		er 14 1 1		1 1. 10 10 10000
5.0	16.1	11.505	52.76	. 0	• 0
7.5	16•4 24•6	11•535 11•970	53.55	•0	•Q 9•5
10.0	32.8	12.500	54+50	174.0	11.6
12.5	41.0			212.0	11.0
15.0	49.2	13.000	55.40	200.0	13.0
17.5	57.4	13.590	56 • 46 57 • 36	236.0	
50.0	65.6	14.090	58.78	200.0	11•0 17•3
22.5	73+8	15.470	59.85	316.0	13.0
25.0	82.0	15.830		236.0	7.9
27.5	90.2	16.570	60.49	144.0	16.2
30.0	98.4	16.905	61•83 62•43	296.0	7•4
32.5	106.6	17.510	63.52	134•0 242•0	13.3
35.0	114.8	17+880	64 • 18		8•1
37.5	123.0	18.490	65 • 28	148.0	13.4
40.0	131.2	18.820	65+88	132.0	7.2
42.5	139.4	19.155	66+48	134•0	7•4
45.0	147.6	19.465	67 • 04	124.0	6.8
47.5	155+8	19.660	67.39	78•0	4•3
50.0	164.0	19.880	67.78	88.0	4.8
52.5	172.2	20.070	68+13	76•0	4.2
55.0	180+4	20.260	68 • 47	76.0	4.2
57.5	188+6	20.465	68.84	82.0	4.5
60+0	196.8	20.675	69.21	84•0	4.6
61.5	201.7	20.745	69.34	46.7	2.6
			n na statistica (an a	
					ner ni ukrátnici n
				an i E. ang Ang Ang	
			- <u>-</u>	<i>p</i> -	
		on and the second second second	10.00 (10.00)	4.~ · · · · · · · · · · · · · · · · · · ·	anticipate in a second of the second
				- 11	n annaistean anna 144 an
			77°8 8 - F 10 58		the statement of the st

DEPTH METERS 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0	DEPTH FEET 16.4 32.8 49.2 65.6 82.0 98.4	TEMPER DEG C 16.050 15.330 15.630 15.640 15.650	60.89 59.59 60.13 60.15	GEOTHERMA DEG C/KM •0 •144•0 60•0 2•0	L: GRADIENT DEG F/100 F -7.9 3.3
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0	FEET 16•4 32•8 49•2 65•6 82•0 98•4	DEG C 16.050 15.330 15.630 15.640	DEG F 60.89 59.59 60.13 60.15	•0 •144•0 60•0	•0 •7•9 3•3
10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0	32•8 49•2 65•6 82•0 98•4	15•330 15•630 15•640	59.59 60.13 60.15	-144•0 60•0	•7•9
15.0 20.0 25.0 30.0 35.0 40.0 45.0	49•2 65•6 82•0 98•4	15•630 15•640	60 • 13 60 • 15	60.0	3.3
20.0 25.0 30.0 35.0 40.0 45.0	65•6 82•0 98•4	15.640	60.15		
25.0 30.0 35.0 40.0 45.0	82•0 98•4				•1
35 • 0 40 • 0 45 • 0			60.17	2.0	•1
40.0 45.0		15.700	60.26	10.0	•5
45+0	114.8	15.750	60.35	10.0	•5
	131.2	15.810	60.46	12.0	•7 •7
50.0	164.0	15+870 15+900	60 • 57 60 • 62	12.0	•3
55.0	180.4	15.920	60+66	4.0	•2
60+0	196+8	15+980	60.76	12.0	•7
65.0	213.2	16.000	60.80	4+0	•2
70.0	229.6	16+310	61.36	62.0	3.4
75+0	246.0	16+340	61.41	6+0	•3
80.0	262.4	16.660	61.99	64•0	3.5
85+0 90+0	278+8	16.750	62.15	18•0	1.0
95.0	311+6	17 • 490	63+48	84•0	3.5
100.0	328.0	17.700	63.86	42.0	2.3
105+0	344+4	17.980	64+36	56+0	3.1
110.0	360.8	18.300	64 • 94	64•0	3.5
115.0	377.2	18.630	65.53	66•0	3.6
120+0	393.6	18.880	65.98	50.0	2.7
125.0 130.0	410•0 426•4	19.210	66.58	66.0	3.6
135.0	442.8	19•510	67.12	60•0 50•0	2.7
140.0	459.2	19.950	67.91	38.0	2.1
145.0	475.6	20.650	69.17	140.0	7.7
150.0	492.0	20.910	69.64	52+0	2.9

A-26

LOCATION:	CRANE,	OREGON
	245/338	

DEPTH	DEPTH	TEMPER	RATURE	GEOTHERMAL: GRADIENT		
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100	
5+0	16+4	13-230	55•81	•0	÷0	
10.0	32.8	13-640	56+55	.82•0	4.5	
15.0	49.2	14.140	57.45	100.0	5.5	
20.0	65.6	14.750	58.55	122.0	5.7	
25.0	82.0	15.290	59.52	108.0	5.9	
30+0	98+4	15-870	60+57	116+0	6.4	
35.0	114•8	16+350	61.43	96•0	5+3	
40 • 0	131.2	16+810	62+26	92.0	5 ∙0	
45.0	147.6	17.132	62.83	64•0	3+5	
50.0	164.0	17.480	63.46	70.0	3.8	
55.0	180.4	17.980	64.36	100.0	5.5	
60+0	196+8	18+470	65+25	98+0	5++	
65•0.	213.2	19.010	66.22	108+0	5•9	
70•0	229.6	19•380	66+88	74+0	4+1	
75.0	246.0	19.800	67.64	84.0	4+6	
80.0	262.4	20.000	68.00	40.0	2.2	
85.0	278.8	20.270	68.49	54.0	3.0	

LOCATION: WAGONTIRE, OREGON 255/255-228

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F
5.∗0	16+4	11.690	53+04	•0	•0
10.0	32.8	10-410	50.74	+256+0	-14+0
15.0	49.2	10.070	50.13	-68.0	+3+7
20.0	65.6	10.040	50.07	-6.0	* 3
25.0	82.0	9.750	49.55	•58·0	-3.2
30+0	98.4	9.460	49.03	-58-0	+3+2
35.0	114+8	9+300	48.74	-32.0	-1.8
40.0	131.2	9.540	49+17	48.0	2+6
45.0	147.6	9.800	49.64	52+0	2.9

LUCATION: WAGONITRE LEG, OKEGON 255/26E-4CC HOLE NUMBER: BR-75-14 DATE MEASURED: 9/30/75

DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT		
FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT	
16•4 24•6	11•110 10•240	52.00 50.43	•0 -348•0	-19•1	
32.8	10+450	50•81 51•31	84•0 112•0	4•6 6•1	
49.2	10.900	51.62	68.0	3.7	
57•4 65•6 73•8	11.030 11.170 11.310	51.85 52.11 52.36	52•0 56•0	2•9 3•1 3•1	
82•0 90•2	11•550 11•775	52•79 53•19	96•0 90•0	5+3 4+9	
	16.4 24.6 32.8 41.0 49.2 57.4 65.6 73.8 82.0	FEET DEG C 16.4 11.110 24.6 10.240 32.8 10.450 41.0 10.730 49.2 10.900 57.4 11.030 65.6 11.170 73.8 11.310 82.0 11.550 11.550	FEET DEG. C DEG. F 16.4 11.110 52.00 24.6 10.240 50.43 32.8 10.450 50.81 41.0 10.730 51.31 49.2 10.900 51.62 57.4 11.030 51.85 65.6 11.170 52.11 73.8 11.310 52.36 82.0 11.550 52.79	FEET DEG C DEG F DEG C/KM 16.4 11.110 52.00 .0 24.6 10.240 50.43 -348.0 32.8 10.450 50.81 84.0 41.0 10.730 51.31 112.0 49.2 10.900 51.62 68.0 57.4 11.030 51.85 52.0 65.6 11.170 52.11 56.0 73.8 11.310 52.36 56.0 82.0 11.550 52.79 96.0	

LOCATION: DOUBLE-O LEG, OREGON 255/31E-48B HOLE NUMBER: BR-75-11 DATE MEASURED: 9/16/75

DEPTH	DEPTH	TEMPER	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
2.5	8.2	13.340	56.01	•0	•0
5.0	16.4	10.510	50.92	-1132.0	-62-1
7.5	24.6	10.240	50.43	-108.0	+5+9
10.0	32.8	10.460	50.83	88.0	4.8
12.5	41.0	10.480	50.86	8.0	• 4
15.0	49.2	10.490	50.88	4•0	•2
17.5	57 • 4	10.490	50.88	•0	• 0
20.0	65.6	10.540	50.97	20.0	1 • 1
55+2	73+8	10.540	50.97	•0	•0
25.0	82.0	10.550	50.99	4•0	•2
27.5	90.2	10.600	51.08	20.0	1 • 1
30.0	98•4	10.650	51 • 17	20.0	1•1
32.5	106.6	10.700	51.26	20.0	1 • 1
35.0	114.8	10.750	51.35	20.0	1 • 1
37.5	123.0	10.810	51.46	24•0	1•3
40.0	131.2	10.880	51.58	28.0	1.5
42.5	139.4	10.950	51.71	28.0	1.5
45.0	147.6	11.030	51.85	32•0	1.8
47.5	155•8	11.100	51.98	28•0	1.5
50.0	164.0	11.180	52.12	32.0	1 • 8
52.5	172.2	11.270	25.53	36•0	2.0
55.0	180 • 4	11.320	52.38	20.0	1•1
57.5	188.6	11.410	52.54	36.0	2.0
60.0	196.8	11.490	52.68	32.0	1.8

LOCATION: DIAMOND LEG, OREGON 25S/33E-3BD HOLE NUMBER: BR-75-1 DATE MEASURED: 11/22/75

	AL GRADIENT	GEOTHERM	ATURE	TEMPER	DEPTH	DEPTH
FT	DEG F/100	DEG C/KM	DEG F	DEG C	FEET	METERS
1.0			1.90 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
	• 0	•0	54 • 41	12.450	8.2	2.5
	-6.6	-120.0	53.87	12.150	16.4	5.0
	-3.7	-68.0	53.56	11.980	24.6	7.5
	9.9	180.0	54.37	12.430	32.8	10.0
	11.4	208.0	55.31	12.950	41.0	12.5
	13.8	252.0	56.44	13.580	49.2	15.0
	11.2	204.0	57.36	14.090	57.4	17.5
	10.5	192.0	58.23	14.570	65.6	20.0
	12.3	224.0	59.23	15.130	73.8	22.5
	10.3	188.0	60.08	15.600	82.0	25.0
	5.8	124.0	60.64	15.910	90.2	27.5
1. 1. (m. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	6.5	118.2	60.87	16.040	93.8	28.6

LOCATION: CRANE, OREGON 255/33E-11BBB HOLE NUMBER: KR-1 DATE MEASURED: 6/12/75

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	ALI GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
5.0	16.4	13.950	57+11	•0	•0
10.0	32.8	13.970	57.15	4.0	•2
15.0	49.2	13.970	57.15	•0	•0
20.0	65.6	13.970	57.15	•0	•0
25.0	82.0	13.980	57.16	2.0	•1
30+0	98.4	13.960	57.13	+++0	
35.0	114.8	13.990	57.18	6.0	•3
40.0	131.2	14.390	57.90	80.0	4 . 4
45.0	147.6	14+440	57.99	10.0	.5
50.0	164.0	15.200	59.36	152.0	8.3
55.0	180.4	15.440	59.79	48.0	2.6
60.0	196.8	15+610	60.10	34+0	1.9
65.0	213.2	15.750	60.35	28.0	1.5

A-29

LOCATION: BOISE AMS, OREGON 255/46E/18AAA HOLE NUMBER: RDH-RM DATE MEASURED: 12/ 8/76

...

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERMAL	GRADIENT
METERS	FEET	DEG C	DEG F		DEG F/100 FT
10.0	32.8	12.110	53.80	• 0	• 0
15.0	49.2	12.520	54 • 54	82.0	4.5
50.0	65.6	12.790	55.02	54.0	3.0
25.0	82.0	12.910	55.24	24.0	1.3
30.0	98.4	13.180	55.72	54.0	3.0
35.0	114.8	13.490	56.28	62.0	3.4
40.0	131.2	13.810	56.86	54.0	3.5
45.0	147.6	13.990	57.18	36.0	2.0
50 - 0	164.0	14.200	57.56	42.0	2.3
55.0	180-4	14.380	57.88	36.0	2.0
60.0	196+8	14.540	58.35	52.0	5.9
65.0	213.2	14.950	58.91	52.0	3.4
70.0	229.6	15.200	59.36	50.0	2.7
75.0	246.0	15.480	59.86	56.0	3.1
80 . 0	262.4	15.770	60.39	58.0	3.2
85.0	278.8	16.060	60.91	58.0	3.2
90+0	295.2	16.400	61.52	68.0	3.7
95.0	311.6	16.580	61.84	36.0	2.0
100.0	328.0	16.960	62.53	76.0	4.2
105.0	344.4	17.260	63.07	60.0	3.3
110.0	360.8	17.610	63.70	70.0	3.8
115.0	377.2	17.850	64 • 13	48.0	2.6
120.0	393.6	18.050	64 • 49	40.0	5.5
125.0	410.0	18.300	64.94	50.0	2.7
130.0	426.4	18.500	65.30	40.0	5.5
135.0	442.8	18.730	65 • 71	46.0	2.5
140.0	459.2	19.000	66.20	54.0	3.0
145.0	475.6	19.230	66.61	46.0	2.5
150.0	492.0	19•460	67.03	46.0	2.5
				Marina (2014)	
		4			
		- 			
					and a second sec

LOCATION: WAGONTIRE LEG, OREGON 265/24E-24AD HOLE NUMBER: BR-75-17 DATE MEASURED: 9/30/75

DEPTH	DEPTH	TEMPE	TEMPERATURE		AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	
5.0	16.4	10.585	51.05	•0	•0
7.5	24.6	10.725	51.30	56.0	3.1
10.0	32.8	11.025	51.84	120.0	6.6
12.5	41.0	11+180	52.12	62.0	3.4
15.0	49.2	11.320	52.38	56.0	3.1
17.5	57.4	11.495	52.69	70.0	3.8
20.0	65.6	11.705	53.07	84.0	4.6
22.5	73.8	11.840	53.31	54.0	3.0
25.0	82.0	12.075	53.73	94.0	5.2
27.5	90.2	12.330	54.19	102.0	5.6
30.0	98.4	12.540	54.57	84.0	4.6
32.5	106.6	12.760	54.97	88.0	4.8
35.0	114.8	12.970	55.35	84.0	4.6
37.5	123.0	13.185	55.73	86.0	4.7
40.0	131.2	13.415	56.15	92.0	5.0
42.5	139.4	13.655	56.58	96.0	5.3
45.0	147.6	13.845	56.92	76.0	4.2
47.5	155+8	14.035	57.26	76.0	4.2
50.0	164.0	14.230	57.61	78.0	4.3
52.5	172.2	14 • 440	57.99	84.0	4.6
55.0	180.4	14.595	58.27	62.0	3•4
57.5	188.6	14.850	58.73	102.0	5.6
60.0	196.8	15.050	59.09	80.0	4 • 4

LOCATION: WAGONTIRE LEG. OREGON 200/256-2000 HOLE NUMBER: BR-75-15 DATE MEASURED: 9/30/75

DEPTH	DEPTH	TEMPERATURE		GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
5•0 7•5	16•4 24•6	10•160 10•795	50•29 51•43	•0 254•0	•0 13•9
10.0 12.5	32•8 41•0	10•920 10•945	51•66 51•70	50•0 10•0	2.7
15.0	49.2	10.965	51.74	8.0	• 4
17.5	57•4	10.995	51.79	12.0	•7
20.0	65.6	11.040	51.87	18.0	1.0
22.5	73.8	11.095	51.97	22.0	1.2

LOCATION: DOUBLE-O LEG, OREGON 265/30E-388 HOLE NUMBER: BR-75-10 DATE MEASURED: 9/16/75

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 F
2.5	8.2	14•160	57•49	•0	•0
5.0	16.4	11.940	53.49	-888.0	=48.7
7.5	24.6	12.230	54.01	116.0	6.4
10.0	32.8	12.480	54.46	100.0	5.5
12.5	41.0	12.610	54.70	52.0	2.9
15.0	49.2	12.820	55.08	84•0	4.6
17.5	57.4	12.890	55.20	28.0	1.5
50.0	65.6	12.980	55.36	36.0	2.0
22.5	73•8	13.090	55.56	44•0	2.4
25.0	82.0	13.180	55.72	36.0	5.0
27.5	90.2	13.250	55+85	28.0	1.5
30.0	98.4	13.300	55.94	20.0	1•1

LOCATION: DOUBLE-O LEG, OREGON 205/30E-2008 HOLE NUMBER: BR-75-8 DATE MEASURED: 9/29/75

DEPTH FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
			Serie Constantine (LEGA) = 7.521	
16•4	13.010	55•42 51•68	•0 •830•0	•0 =45•5
32•8 41•0	11•215 11•330	52•19 52•39	112•0 46•0	6•1 2•5 •8
57.4	11.720 12.085	53·10 53·75	142•0 146•0	7•8 8•0
73+8 82+0	12•095 12•260	53•77 54•07	4•0 66•0	•2 3•6
	24.6 32.8 41.0 49.2 57.4 65.6 73.8	24.6 10.935 32.8 11.215 41.0 11.330 49.2 11.365 57.4 11.720 65.6 12.085 73.8 12.095	24.6 10.935 51.68 32.8 11.215 52.19 41.0 11.330 52.39 49.2 11.365 52.46 57.4 11.720 53.10 65.6 12.085 53.75 73.8 12.095 53.77	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 HOLE NUM	DOUBLE-0 LEG 265/46E/28AE BER: RDH-RKVL SURED: 12/ 8/3	3			
DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
 METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
13.0	32.8	12.050	53.69	•0	• 0
15.0	49.2	12.500	54.50	90.0	4.9
50.0	65.6	12.840	55.11	68.0	3.7
25.0	82.0	13.270	55.89	86.0	4 • 7
30.0	98.4	13.700	56.66	36.0	4 • 7
35+0	114.8	14.030	57-25	56.0	3.6
40.0	131.2	14.430	57.97	30.0	4 • 4
45.0	147.6	14.770	58.59	68.0	3•7
50.0	164.0	15.130	59.23	72.0	4.0
55.0	180.4	15.480	59.86	70.0	3.8
50-0	196.8	15.340	6C • 51	72.0	4 • 0
55.0	213.2	16.200	61 - 16	72.0	4 • 0
 70.0	229.6	16.530	61.75	66.0	3.6
75.0	246.0	16.940	62.49	82.0	4.5
30.0	262.4	17.280	63.10	68.0	3.7
 85.0	278.8	17.700	63.86	84.0	4.6
90.0	295.2	18.120	64.62	84•0	4.6
95.0	311.6	18.530	65.35	82.0	4.5
 100.0	328.0	18.990	66.18	92.0	5.0
105.0	344 • 4	19.280	66.70	58.0	3.2
110.0	360.8	19.590	67.26	62.0	3•4
115.0	377.2	20.070	68.13	96.0	5.3
120.0	393.6	20.510	68.92	88.0	4 • 8
125.0	+10.0	20.723	69.30	42.0	2.3

LOCATION: DOUBLE-O LEG, OREGON 275/29E-21AC HOLE NUMBER: BR-75-9 DATE MEASURED: 9/29/75

DEPTH	DEPTH	TEMPE	TEMPERATURE		AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
5.0	16•4	12+650	54.77	•0	•0
7.5	24.6	11.650	52.97	-400.0	•22.0
10.0	32.8	11.140	52.05	-204-0	-11.2
12.5	41.0	11.420	52.56	112.0	6 • 1
15.0	49.2	11.630	52.93	84.0	4 • 6
17.5	57•4	11.770	53.19	56.0	3•1
50.0	65.6	11.880	53.38	44.0	2.4
22.5	73.8	11.970	53.55	36.0	2.0
25.0	82.0	12.070	53.73	40.0	2.2
27.5	90.2	12.195	53.95	50.0	2.7
30.0	98.4	12.325	54.18	52.0	2.9
32.5	106.6	12.450	54.41	50.0	2.7
35.0	114.8	12.600	54.68	60.0	3.3
37.5	123.0	12.730	54.91	52.0	2.9
40.0	131.2	12.860	55.15	52.0	2.9
42.5	139.4	13.010	55.42	60.0	3•3
45.0	147.6	13.180	55.72	68.0	3.7

LOCATION: COYOTE BUTTE, OREGON 275/30E-36CC HOLE NUMBER: BR-75-7 DATE MEASURED: 9/16/75

DEPTH	DEPTH			GEOTHERMAL GRADIENT		
METERS	FEET	DEG Ç	DEG F	DEG C/KM	DEG F/100 F	
2.5	8•2	12.000	53.60	•0	•0	
5.0	16.4	10.280	50.50	=688•0	•37 • 8	
7.5	24.6	10.670	51.21	156.0	8.6	
10.0	32.8	11.040	51 . 87	148.0	8 • 1	
12.5	41.0	11.200	52.16	64•0	3.5	
15.0 17.5	49•2 57•4	11.360	52.45	64•0	3•5 6•4	
20.0	65.6	11•650 12•060	52•97 53•71	116•0 164•0	9.0	
22.5	73.8	12.160	53+89	40.0	2.2	
25.0	82.0	12.340	54.21	72.0	4.0	
27.5	90.2	12.530	54 • 55	76.0	4.2	
30.0	98.4	12.770	54.99	96.0	5•3	
32.5	106.6	12.980	55.36	84.0	4.6	
35.0	114.8	13.200	55.76	88.0	4 • 8	
37.5	123.0	13.430	56.17	92.0	5.0	
40.0	131.2	13.640	56.55	84•0	4.6	
42.5	139.4	13.850	56 • 93	84•0	4.6	
45.0	147.6	14.070	57.33	88.0	4.8	
47.5	155.8	14.260	57.67	76.0	4.2	
50+0 52+5	164.0	14 • 470	58.05	84•0	4.6	
55.0	172•2 180•4	14•640 14•710	58•35 58•48	68+0 28+0	3•7 1•5	
57.5	188.6	15.160	59.29	180.0	9.9	
60.0	196.8	15.410	59.74	100.0	5.5	
62.5	205.0	15.650	60 • 17	96+0	5.3	
65.0	213.2	15.890	60.60	96.0	5.3	
67.5	221.4	16.120	61.02	92.0	5.0	
			17. 17.			
					1997 - C. C. Start, and S. C. Start, Spin Street, Spin Street, Spin Street, Spin Street, Spin Street, Spin Stre	

LOCATION: MALHEUR LAKE, OREGON 275/32E-238B

	MEASURED: 7/17/75				
DEPTH	DEPTH	TEMPE	RATURE	GENTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
5.0	16.4	10-100	50+18	•01	•0
10+0 15+0	32•8 49•2	12.090	53.76	398•0	21.•8
		12.090	53.75	•0	•0
20•0 25•0	65.6	12.100	53.78	2.0	•1
	82.0	12.360	54.25	52.0	2.9
30.0	98+4	12•450	54•41	18•0	1.0
35•0	114+8	12-670	54•81	44.0	2.4
40.0	131+2	12+990	55+38	64+0	3•5
45.0	147.6	13.160	55.69	34•0	1.9
50.0	164.0	13.440	56 • 19	56.0	3 • 1
55•0	180•4	13.750	56.75	62.0	3•4
60•Q	196•8	14-110	57+40	72.0	Sector Charles Art Okazier
65.0	213•5	14-340	57.81	46.0	2•5
70+0	229•6	14.660	58+39	64•0	3.5
75.0	246.0	14.893	58.80	46.0	2+5
80•0	262.4	15.100	59.18	42.0	2.3
85.0	278.8	15.340	59.61	48.0	2.6
90+0	295+2	15+670	60.51	66+0	3+6
95•0	311+6.	15+880	60.58	42.0	2•3
100+0	328+0	16+240	61+23	72+0	4.0
105+0	344+4	16+600	61+88	72.0	4 • 0
110.0	360.8	16.940	62.49	68.0	3.7
115.0	360•8 377•2	17.270	63.09	66.0	3.6
120.0	393+6	17+660	63+79	78+0	
125.0	410.0	18.070	64.53	82.0	4.5
130.0	426.4	18+470	65.25	80.0	4.4
135+0	+42+8	18.363	55+95	78+0	\$+3
140.0	459+2	19.230	66.61	74.0	4 • 1

LOCATION: DIAMOND LEG, OREGON 275/33E-33CB HOLE NUMBER: BR-75-2 DATE MEASURED: 11/22/75

DEPTH	DEPTH	TEMPER	ATURE	GEOTHE	RMAL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	
2.5	8.2	12.570	54•63	•0	•0
5.0	16.4	12.760	54.97	76.0	4.2
7.5	24.6	11.810	53.26	-380.0	•20.9
10.0	32.8	11.360	52.45	-180.0	-9.9
12.5	41.0	11.350	52.43	-4.0	-•2
15.0	49.2	11.350	52.43	•0	•0
17.5	57.4	11.310	52.36	-16.0	9
50.0	65.6	11.330	52.39	8.0	• 4
22.5	73.8	11.290	52.32	-16.0	•• 9
25.0	82.0	11.280	52.30	-4.0	•• 2 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
27.5	90.2	11+290	52.32	4.0	•2
30.0	98•4	11.280	52.30	-4.0	*•2
30.5	100.0	11.290	52.32	20.0	1 • 1

LUCATION; WAGONTIRE LEG, OREGON 285/24E-48A HOLE NUMBER: BR-75-16 DATE MEASURED: 9/30/75

DEPTH	DEPTH	TEMPER	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
5.0	16.4	10•145	50.26	•0	•0
7.5	24.6	9.340	48.81	-322.0	-17.7
10.0	32+8	9+340	48.81	•••	•0
12.5	41.0	9.520	49+14	72.0	4•0
15.0	49+2	9.655	49.38	54+0	3.0
17.5	57.4	9.760	49.57	42.0	2•3
50.0	65.6	9.890	49.80	52.0	2.9
22.5	73.8	10.040	50.07	60.0	3.3
25.0	82.0	10.200	50.36	64•0	3.5
27.5	90.2	.10.255	50.46	22.0	1.2
30.0	.98.4	10.365	50+66	44.0	2.4

HOLE NUM	: COYOTE BUTTES, 285/30E+13DA BER: HP=12	ØREGØN			
DATE MEA DEPTH METERS	SURED: 7/22/75 DEPTH FEET		RATURE DEG F	GEOTHERM DEG C/KM	IAL. GRADIENT DEG F/100 FT
20+0 25+0	65+6 82+0	13•040 13•450	55+47 56+21	•0 82•0	•0; 4•5

LOCATION:	DIAMOND LEG. 285/32E+36CC	OREGON
	ER: BR-75-3 JRED: 8/12/75	

DEPTH	DEPTH	TEMPE	TEMPERATURE		AL GRADIENT
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
20.0	65•6	12.990	55•38	•0	•0
22,5	73.8	13.050	55.49	24.0	1.3
25.0	82.0	13.120	55.62	28.0	1.5
27.5	90.2	13.200	55.76	32.0	1.8
30	98.4	13.300	55.94	40.0	5.5
32.5	106.6	13.430	56 • 17	52.0	5.9
35.0	114.8	13.570	56.43	56.0	3•1
37.5	123.0	13.680	56.62	44•0	2•4
40.0	131.2	13.700	56.66	8.0	• 4
42.5	139.4	13.700	56.66	•0	• 0
45.0	147.6	13.700	56.66	•0	•0
47.5	155.8	13.710	56.68	4•0	•2
50.0	164.0	13.710	56.68	•0	•0

LOCATION: DIAMOND LEG, OREGON 295/32E=34DC HOLE NUMBER: BR-75-4 DATE MEASURED: 9/16/75

DEPTH	DEPTH TEMPERATU		RATURE	GEOTHERM	AL GRADIENT	
METERS	FEET	DEG C	DEGF	DEG C/KM	DEG F/100 FT	
2.5	8.2	15.960	60.73	•0	•0	
5.0	16.4	13.290	55.92	-1068.0	-58.6	
7.5	24+6	12.120	53.82	-468-0	-25+7	
10.0	32+8	12.100	53.78	-8.0	- • 4	
12.5	41.0	12+320	54.18	8.00	4.8	
15.0	49.2	12.500	54.50	72.0	4.0	
17.5	57.4	12.680	54.82	72.0	4.0	
20.0	65.6	12.910	55.24	52.0	5.0	
22+5	73.8	13-120	55.62	8.4.0	4.6	
25.0	82.0	13.360	56.05	\$6+0	5.3	
27.5	90+2	13+630	56+53	108+0	5.9	
30.0	98.4	13.920	57.06	116.0	5.4	
32.5	106.6	14.220	57.60	120.0	5.6	
35.0	114.8	14.540	58 . 17	128.0	7.0	
37.5	123.0	14+860	58.75	128.0	7.0	
40.0	131.2	15.200	59.36	136+0	7.5	
42.5	139.4	15.550	59.99	140.0	7.7	
45.0	147.6	15.930	50.67	152.0	8+3	
47.5	155.8	16.360	61 • 45	172.0	9•4	
50.0	164.0	16.790	62.22	172.0	9.4	
52.0	170.6	17+130	62.83	170.0	9+3	
			3. 1. 4	1000 CON		

LOCATION: DIAMOND LEG, DREGON 305/31E-233C HOLE NUMBER: BR-75-5 DATE MEASURED: 9/16/75

DEPTH	DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT	
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
2.5	8.2	14.700	58.46	•0	•0
5.0	16.4	11.890	53.40	-1124.0	-61.7
7.5	24+6	11+730	53.11	-64.0	-3.5
10.0	32.8	12.100	53.78	148.0	8 • 1
12.5	41.0	12.400	. 54.32	120.0	6.6
15.0	49.2	12.440	54.39	16.0	•9
17.5	57.4	12.530	54.55	36.0	2.0
20.0	65.6	12.730	54.91	80.0	4 • 4
22.0	73.8	12+800	55.04	28.0	1.5
25.0	82.0	12.830	55.09	12.0	•7
27.5	90.2	13.060	55.51	92.0	5.0
30.0	98.4	13.190	55.74	52.0	2.9

A-37

LOCATION: DIAMOND LEG, OREGON 325/32E-168A HOLE NUMBER: BR-75-6 DATE MEASURED: 9/16/75

DEPTH	DEPTH TEMPERATI			URE GEOTHERMAL GRADIENT	
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
2.5	8.2	13.890	57.00	•0	•0
5.0	16.4	10.600	51.08	•1316•0	•72•2
7.5	24+6	10.520	50.94	•32•0	•1•8
10.0	32.8	10.720	51.30	80.0	4 • 4
12.5	41.0	10.820	51.48	40• 0	2.2
15.0	49.2	10.830	51.49	4•0	•2
17.5	57.4	10.850	51.53	8.0	•4
20.0	65.6	10.890	51.60	16.0	•9
22.5	73.8	10.930	51.67	16.0	•9
25•0 2 7 •5	82.0	10.970	51.75	16.0	•9
30.0	90.2	11.020	51+84	50.0	1 • 1
32.5	98.4	11.060	51.91	16.0	•9 •9
35.0	106•6 114•8	11.100	51.98	16.0	•9
37.5	123.0	11.140	52.05 52.14	16•0	1.1
40+0	131.2	11.230	52+21	16.0	• • 9
42.5	139.4	11.270	52.29	16.0	.9
45.0	147.6	11.310	52.36	16.0	.9
47.5	155.8	11.360	52.45	20.0	1 • 1
50.0	164.0	11.400	52+52	16+0	•9
52.5	172.2	11.450	52+61	20.0	1.1.
55.0	180+4	11.490	52.68	16.0	.9
57+5	188.6	11.540	52.77	20.0	1 • 1
60.0	196.8	11.590	52.86	20.0	1.1
	-	* 			
•			*		
		en e			

GEOTHERMAL GRADIENT GRAPHS

APPENDIX B

в-З

B-1.5

