OPEN-FILE REPORT 0-86-19

SEDIMENT STUDIES ON THE GORDA RIDGE

Robert Karlin

School of Oceanography University of Washington Seattle, Washington 98195

and

Mitchell Lyle

College of Oceanography Oregon State University Corvallis, Oregon 97331

EXECUTIVE SUMMARY

Coring operations during two cruises in 1985 recovered five gravity cores from the northern Gorda Ridge and twelve from the Escanaba Trough in the south. Sediment studies on this material have revealed that recent volcanic activity and related hydrothermal activity can be discerned and dated within the Escanaba Trough by means of sulfide-rich tuffaceous flow deposits derived locally from volcanic centers within the basin. Based upon tentative correlations we estimate that the volcanic center at 40° 45'N was active about 2400 years ago and that the volcanic center at 41° N was active about 3000 years ago. In addition we can also date hydrothermal activity by means of sulfur preserved from plume material in both northern Gorda and Escanaba Trough sediments.

NOTICE

This report is based on results of a research program directed by the joint federal-state Gorda Ridge Technical Task Force, managed by the Oregon Department of Geology and Mineral Industries and funded by the Minerals Management Service, U.S. Department of the Interior, through Cooperative Agreement. Opinions expressed are those of the authors and do not constitute endorsement by the sponsoring agencies or the Task Force.

The Oregon Department of Geology and Mineral Industries is publishing this paper because the subject matter is consistent with the mission of the Department. To facilitate timely distribution of information, camera-ready copy submitted by the authors has not been edited by the staff of the Oregon Department of Geology and Mineral Industries.

TABLE OF CONTENTS

Ρ	age	

I. INTRODUCTION	1
I.1 PROGRAM OBJECTIVES I.2 BACKGROUND I.2.1 Tectonic Setting of the Gorda Ridge I.2.2 Sedimentation on the Gorda Ridge I.2.3 Effect of the Redox Environment on Hydrothermal Mineralization	1 2 2 4 1
II. METHODS	5
III. RESULTS	6
 III.1 CORING OPERATIONS III.2 LITHOLOGY III.3 SOUTHERN AREA III.3.1 ROCK/PALEO MAGNETISM III.3.2 SEDIMENT CHEMISTRY III.4 NORTHERN GORDA RIDGE III.4.1 ROCK/PALEO MAGNETISM III.4.2 SEDIMENT CHEMISTRY 	6 9 10 20 31 31 31
IV. DISCUSSION	31
IV.1 AGES OF THE GORDA RIDGE SEDIMENTS IV.2 EVIDENCE OF VOLCANISM AND HYDROTHERMAL ACTIVITY IV.3 PLUME-RELATED DEPOSITION OF HYDROTHERMAL MATERIAL	31 32 39
V. DIRECTIONS OF FUTURE WORK	40
VI. CONCLUSIONS	40
VII. ACKNOWLEDGEMENTS	41
VIII. REFERENCES	41
IX. APPENDICES	43
IX.1 CORE LOCATIONS AND RECOVERY IX.2 CORE DESCRIPTIONS IX.3 WATER CONTENTS IX.4 PALEOMAGNETIC AND ROCK MAGNETIC DATA IX.5 BULK CHEMICAL ANALYSES	43 44 60 64 71

LIST OF FIGURES

Page

1.	Location of volcanic centers in the Escanaba Trough based upon single channel seismic reflection lines from the L6-85-NC cruise in September 1985.	3	
2.	Location of gravity cores from the L6-85-NC cruise to the Escanaba Trough. Seven cores were recovered from the axial valley proper.	7	
3.	Locations of the 5 gravity cores recovered during the August 1985 W8508AA cruise to the northern Gorda Ridge.	8	
4.	Water contents from the Escanaba Trough and North Gorda Ridge cores.	11-12	
5.	Whole core magnetic susceptibility measurements for the Escanaba Trough and North Gorda Ridge core sets.	14-15	
6.	NRM intensities in Escanaba Trough and North Gorda Ridge cores, normalized per gram of wet sediment weight.	16-17	
7.	NRM inclinations (degrees) in Escanaba Trough and North Gorda cores.	18-19	
8.	Group I detrital elements as determined by interelement correlations in core L10.	21	
9.	Variation of Group I elements (here represented by sodium) in all the cores from the Escanaba Trough and North Gorda Ridge.	22	
10.	Group II detrital elements, as illustrated by downcore elemental variations in L10.	23	
11.	Variation of Group II elements as represented by magnesium in the Escanaba Trough and North Gorda Ridge cores.	24	
12.	Group III elements in core L10.	26	
13.	Variation of Group III elements in Escanaba Trough and North Gorda Ridge cores, as represented by Si.	27	
14.	Fe and Mn contents of Escanaba Trough and North Gorda Ridge cores.	28-29	
15.	Sulfur contents of Escanaba Trough and North Gorda Ridge cores.	30	
16.	Age-depth profile of gravity core L1 based upon radiocarbon dating.	35	

17.	Age-depth profile of gravity core L8.	35
18.	Age-depth plot of radiocarbon data for gravity core L12.	36
19.	Age-depth plot of radiocarbon data for core W9 on the northern Gorda Ridge.	36
20.	A comparison of two turbidite sections in L8 and L12 from the Escanaba Trough to W9 from the North Gorda Ridge.	37

LIST OF TABLES

Page

1.	Radiocarbon Ages of Dated Samples	33
2.	Estimated Ages for Events Based on C-14 Profiles	34
з.	Estimated Sedimentation Rates for Gorda Ridge Cores	34

I. INTRODUCTION

I.1 PROGRAM OBJECTIVES

The Gorda Ridge is unusual among active spreading centers in being located proximal to continental sources and, in the southern portion, underlain by a thick section of Pleistocene terrigenous turbidites. The thick sediment cap provides an insulating blanket profoundly affecting the thermal regime and underlying crustal formation processes. Confined hydrothermal circulation, restricted by the impervious sediment, can result in high upper crustal temperatures and intense sediment diagenesis, causing localized hydrothermal deposits that are much larger than those found in unsedimented spreading centers.

As part of the Minerals Management Service program to evaluate the resource potential of the Exclusive Economic Zone, integrated sediment studies of the Gorda Ridge were undertaken using sediment geochemistry, paleo/rock magnetism, and sedimentology. The overall goals of the project are to examine the sediment historical record for evidence of hydrothermal and/or volcanic activity and to establish the extent, duration, and frequency of such events. An important aspect of this research is to determine the influences of the ambient redox environment on preserving volcanogenic signals or remobilizing metals within the sediment column.

The specific objectives of this work are:

- To determine whether and how hydrothermal mineralization is preserved in axial valley sediments,
- To establish a time scale and to examine the spatial extent of fallout from hydrothermal plumes,
- To evaluate the effects of ambient geochemical conditions on the preservation of metal enriched phases associated with hydrothermal plume fallout,
- To assess the timing and spatial extent of volcanic events or tilting associated with dome building as recorded in axial valley sediments.

Sediments were obtained from two cruises in 1985. The L6-85-NC cruise aboard the USGS research vessel LEE concentrated on the Escanaba Trough of to the Southern Gorda Ridge. Cores from this cruise are designated here as L cores. The W8508AA cruise on the Oregon State University ship WECOMA focussed on the Northern Gorda and cores from this area are herein called W cores.

I.2 BACKGROUND

I.2.1 Tectonic Setting of the Gorda Ridge

Regional Setting: The Gorda Ridge is a slow-spreading mid-ocean ridge (3 cm/yr full rate) located within 200 miles of the Oregon-California coastline. The ridge is bounded on the south by the Mendocino fracture zone at 40° 20'N, and on the north by the Blanco fracture zone at ~43° 05'N. Unlike the Juan de Fuca Ridge to the north (Malahoff et al., 1982), the axial valley of the Gorda Ridge is bounded by faults and uplifted terraces (Atwater and Mudie, 1973; Fowler and Kulm, 1970, Heinrichs, 1970). The axial valley is more than 3200 m deep and the marginal ridges on either side typically rise one or two kilometers above the axial valley (McManus, 1967), similar to the slow spreading Mid-Atlantic Ridge.

The Gorda ridge is divided into three separate segments, each with a different spreading history (Atwater and Mudie, 1973; Riddihough, 1980). The northern section (Figure 2b) is marked by a relatively fast total opening rate of 5.8 cm/yr, which decreases to a total opening rate of 3.0 cm/yr on the southern and central ridge segments (Riddihough, 1980). Some workers have suggested that the ridge is spreading asymmetrically at present (Solano-Borrego, 1982). Riddihough (1980) and workers with access to SEABEAM bathymetry (A. Malahoff, oral comm.) conclude, however, that asymmetric spreading of the south and central sections of the Gorda Ridge ceased about 2 m.y. ago. Some bathymetric evidence supports recent oblique spreading on the northern Gorda (A. Malahoff, oral comm.).

The southern segment of the Gorda Ridge (Escanaba Trough, Figure 1), is offset from the central and northern segments of the Gorda Ridge by a small fracture zone. Sediments cover the axial valley to about 41° 15'N, or for about the southernmost 80 km of the rise axis. The valley is filled with more than 500 meters of sediment in the south, but the sediment thins to the north where the axial valley shoals. Much of this sediment flowed off the continents as turbidites during Pleistocene low sealevel stands. During the Holocene, major continentally-derived turbidites are not observed and sedimentation appears to be better described as hemipelagic (see below). Within the axial valley are several volcanic centers where sediments have been uplifted 50-100 meters above the surrounding turbidite plain and in some cases where basalts pierce the sediment and form hills.

Domes or Volcanic Centers: Separate volcanic centers in the Escanaba Trough have been identified by the L6-85-NC cruise to the Gorda Ridge. Several of these domes had been crossed previously during a site survey for DSDP Site 35 (Moore,1970; Moore and Sharman, 1970) but were interpreted as one long continuous basement ridge due to the lack of adequately spaced seismic reflection lines. The more closely spaced seismic reflection work in 1985 was sufficient to delineate 5 discrete volcanic centers in the sedimented part of the axial valley generally offset to the west of the center of the valley (Figure 1) . These volcanic edifices can be traced upward through the 300-to-500 meter-thick sedimentary fill and are in places exposed on the seafloor. A detailed transponder-navigated survey of one center at 41 N showed it to be composed of several smaller, overlapping volcanic hills.

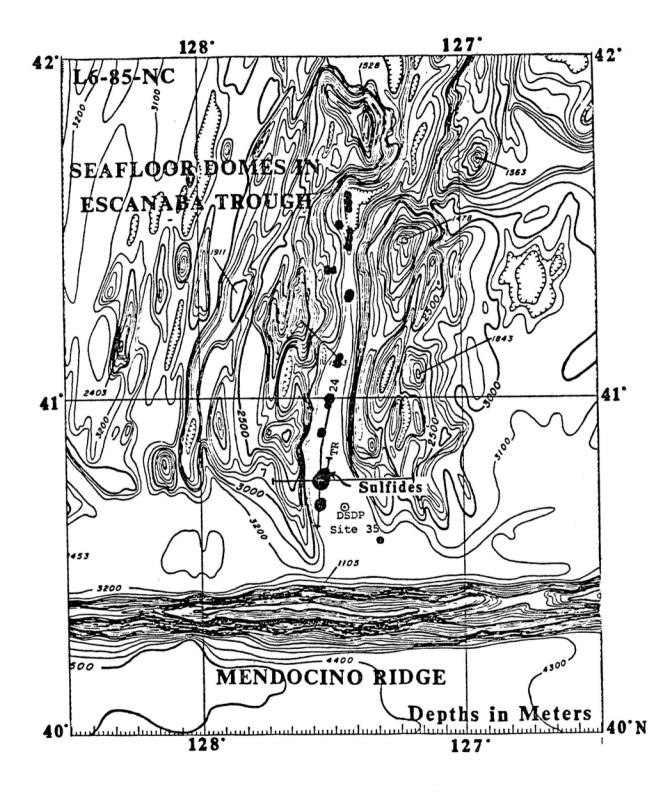


Figure 1. Location of volcanic centers in the Escanaba Trough based upon single channel seismic reflection lines from the L6-85-NC cruise in September 1985.

The sediments have been uplifted over and adjacent to these volcanic edifices, but the absence of large-scale drag folding in the reflector sequences around the margins of the intrusive zones indicates that these structures either predate much of the sedimentary fill or have grown contemporaneously with the sedimentary section. Small-scale superficial deformation of the sediments surrounding the volcanic centers supports the latter interpretation.

I.2.2 Sedimentation on the Gorda Ridge

Sediments in the Gorda Ridge area are derived from terrigenous, biogenic, volcanic, and, possibly, hydrothermal sources. The terrigenous components include mainly chlorite, illite, plagioclase, quartz, and minor mafic minerals from metamorphic and volcanic terrains of the Northern California Coast Ranges and Klamath Mountains of Oregon, as well as lesser abundances of smectites from the Columbia River Basin (Karlin, 1980; Phipps, 1974; Spigai, 1971). Except for Phipps (1974) and Heath et al. (1976), little work has been done in characterizing sedimentary biogenic constituents in the ridge environment. However, on the Southern Oregon margin and in the Cascadia Basin, Holocene olive-grey muds show a dominance of radiolaria over foraminifera in the coarse grain fraction, whereas in glacial grey lutites, planktonic forams dominate (Duncan, et al., 1970; Barnard and McManus, 1973).

In ridge sediments, volcanic components can be derived from primary extrusive activity and dispersion by nepheloid, plume or turbidite transport on the seafloor. The main evidence of neo-volcanic activity is the presence of volcanic glass and lithic fragments associated with extrusion. Given sufficient core coverage, areal changes in volcanic grain size can be used to map a given volcanic event, but hydraulic sorting due to turbidite transport can complicate interpretations. Volcanic glass in sediments can also be derived from exposed volcanic structures due to shedding and reworking processes.

Hydrothermal sedimentary components along the Gorda Ridge could be derived from primary venting and hydrothermal plumes such as observed over open, unsedimented ridge crests. If massive sediment-hosted sulfide deposits are present, mass wasting, slumping, seismically-induced turbidite activity, or tectonic tilting can cause remobilization and redeposition of hydrothermal material. However, the nature of hydrothermal mineralization in the sediments of the Gorda Ridge may depend on the ambient geochemical environment in which the metal-rich phases are deposited.

I.2.3 Effect of the Redox Environment on Hydrothermal Mineralization

Typical hemipelagic sediments show a red-brown oxic surface layer, a tan/olive transitional zone overlying grey-green sediment. This zonation is due to the progressive consumption of oxidants, proceeding from O_2 , NO_3 , and Mn(IV) in the brown zone, to Fe(III) and eventually SO_4 in the green zone. These diagenetic processes are reflected in the sediments as high Mn concentrations in the surface sediments. When sulfate reduction is present, diagenetic sulfides are precipitated at depth. In a given depositional

regime, the sequence of reactions can be telescoped or compressed, and later reactions (e.g. sulfate reduction) may or may not be present at depth, depending primarily on the input of metabolizable organic carbon and sediment accumulation rates.

In pelagic regions containing hydrothermal input, hydrothermal fallout from plumes is usually evidenced in anomalously high levels of Mn and Fe. Hydrothermal sulfur is usually rapidly oxidized to sulfate and diffuses to the seawater in such oxic environments and is not present in the sediments.

In Gorda Ridge sediments, because of more rapid sedimentation and higher organic input, manganese is remobilized at depth and reprecipitated near the surface. In such sediments, a hydrothermal Mn signal could be obscured or removed by bacterially mediated organic matter decomposition reactions. Iron, in contrast, is not remobilized to the same extent as Mn, because it rapidly transforms into other crystalline phases. However, iron is a common component of terrigenous, volcanic, as well as hydrothermal sources; thus, separating hydrothermal input from other competing sources can be difficult. Similarly, sulfur in sediments can be due to either (or both) hydrothermal input or diagenetic sulfides.

II. METHODS

Sediment cores from the S.P. LEE L6-85-NC and WECOMA W8508AA cruises were obtained using a three meter gravity corer with 4" diameter plastic barrels. A magnetic compass/tilt meter was used on four of the LEE cores to obtain absolute orientations and measurements of core tilting upon penetration. Cores were cut into 1.5 m lengths, capped then stored in a refrigerated van until arrival at Newport, whereupon they were transferred to the OSU core storage facility in Corvallis.

At the OSU core laboratory, whole core magnetic susceptibility (K) measurements at 1 cm intervals were made using a Barthington M.S.2 Susceptibility Meter. Due to the ring sensor geometry, the system response is a cosine-shaped with a bandwidth of +/-5 cm. Thus, each measurement is a centerweighted integration of susceptibilities within 5 cm of the sensor position. After these measurements, cores were split into archive and working halves with twin routers. Standard core descriptions and smear slides were made immediately after opening. Color pictures of the core sections were kindly provided by Mr. T. Chase (USGS, Menlo Park).

Soon after the initial descriptions, samples for paleomagnetism, chemistry, and water contents were taken from the working core halves. Paleomagnetic sampling was done at 5-10 cm intervals, using a thin-walled square stainless steel tube, mounted in an orienting jig, to minimize disturbance. All samples for rock/paleomagnetism were kept cold and in a low field environment to inhibit water loss and prevent viscous remanence acquistion. Natural remanent magnetization measurements were made on the Schoenstadt spinner magnetometer at OSU and a SCT cryogenic magnetometer at the University of Washington. Instrumental precision was ~1%; however, due to unavoidable viscous and storage effects, replicability was usually 5% or better.

Samples were prepared for chemical analyses by freeze-drying and disaggregation in a ball mill, then pressing the powdered samples into pellets. Since the samples were undiluted, trace elements could be measured at concentrations of less than 100 parts per million. Chemical analyses were done on the OSU X-ray fluorescence (XRF) facility. Raw data were collected with a Phillips PW1600 X-ray Fluorescence Spectrometer with 25 fixed element detectors and 2 scanning LiF detectors to calculate X-ray background at each peak. Backgrounds were calculated from empirical relations established using blanks of different mean atomic number between measured background points and background at each peak. Backgrounds were stripped and the stripped data were normalized to a monitor standard run between each sample to eliminate minor machine drift. Concentrations were calculated using the XRF11G program (Chriss Software) calibrated with over 100 NBS, USGS, Canadian, French, and South African geological standards, and mixtures of these standards with each other or CaCO3. Precision based upon multiple measurements of an in-house sediment standard was approximately 3% for Na and 1% or less for the other elements.

The chemical data for each element were further corrected for porewater sea salt dilution (left in the sample during the drying process) by measuring Cl content of each sample and by assuming that the porewater composition was the same as seawater. A mass of sea salt was then calculated and concentrations of each element were then corrected for dilution by the additional salt mass in the sample. In addition, Na, Mg, Ca, K, and S sea salt contributions were calculated and subtracted from the raw elemental concentrations. We also corrected for calcite dilution in each sample based upon a normative calculation using Ca (Dymond et al, 1976). The purpose of this correction is to remove the dilution effect of one of the major biogenic components upon elemental concentrations. The corrected data are reported in Appendix IX.5.

Carbon-14 analyses were carried out by Radiocarbon Ltd. on roughly 200 gm samples in 4 to 5 intervals from 4 cores: L1,L8,L12, and W9. The samples were treated before analysis with weak phosphoric acid to remove calcite. The ages are thus derived from the organic fraction.

III. RESULTS

III.1 CORING OPERATIONS

On the R/V LEE L6-85-NC cruise in 1985, 12 gravity cores were recovered from the southern Gorda Ridge and Escanaba Trough (Figure 2). Seven cores came from the ridge axis, one from the east flank and four from the west flank of the Trough. Five cores were taken from the northern ridge during the WECOMA W8508AA cruise (Figure 3). In the north, one core was located at the axis,

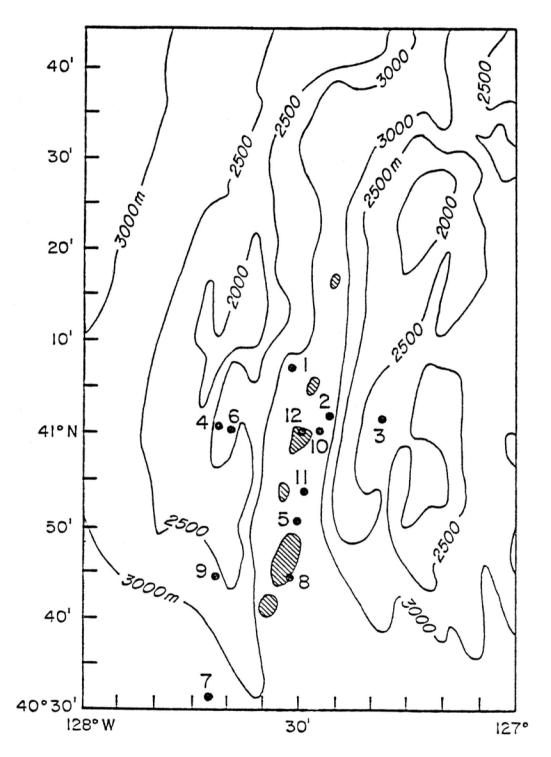


Figure 2. Location of gravity cores from the L6-85-NC cruise to the Escanaba Trough. Seven cores were recovered from the axial valley proper.

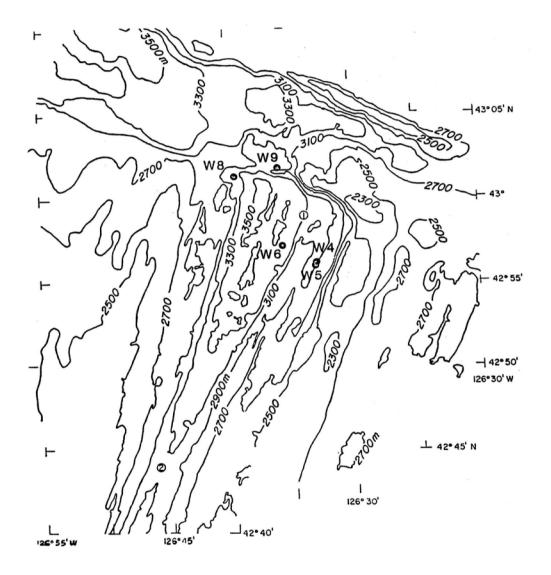


Figure 3. The locations of the 5 gravity cores recovered during the August 1985 W8508AA cruise to the northern Gorda Ridge.

two came from an elevated bench on the eastern valley wall, and two were taken on an elevated bench at the Gorda Ridge-Blanco Transform intersection.

III.2 LITHOLOGY

The overall lithology of the sediments from both the northern and southern Gorda Ridge is similar to other marine sediments found off the Oregon margin. The sediments are silty clays or clayey silts, usually classified as hemipelagic muds, or lutites. The surfaces of all the cores show the prominent, commonly observed color change from brown to gray-green which marks the shift from Mn reduction to Fe reduction (Lyle, 1983). The surficial brown layer usually had thicknesses of about 2 cm, but in some cases, was up to 10 cm thick.

Most of the material in the cores was fine-grained continental detritus with a small, but significant fraction of calcitic and opaline biogenic tests. Diatoms and radiolaria were the typical biogenic material preserved in the northern cores and the axial and eastern cores of the Escanaba Trough. On the west flank, calcareous microfossils became more abundant and dominanted the biogenic fraction. Calcareous microfossil abundances also varied downcore, apparently in response to Pleistocene and Holocene climatic change. The downcore change in calcite abundance thus provides a means of correlating cores on a regional scale.

At the base of the cores from the Escanaba Trough we noted a change in sediment color and texture from a mottled olive grey or dark grey mud to a more homogeneous darker grey clay. As discussed later, this lithologic change was also evidenced in downcore shifts in sediment chemistry, water content, and magnetization. Since the terrigenous source for all of the sediments was the North American land mass to the east, the lithologic boundary probably marks a major shift in sediment supply associated with climatic change at the end of the last glacial period, between 10,000 and 20,000 years ago.

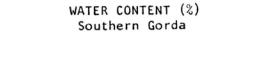
Occasional silty laminated sections were found in two northern cores (W8 and W9), three Escanaba Trough cores (L8, L12, and L11) and one core from the western flank of the Escanaba Trough (L7). These silt bands are probably flow deposits and, in many cases, turbidites. Their presence indicates that some sediment redeposition occurred on the Gorda Ridge. However, because these silt layers were relatively scarce (except in L7), the dominant mode of sediment accumulation was mainly by passive hemipelagic deposition processes, at least in the Holocene.

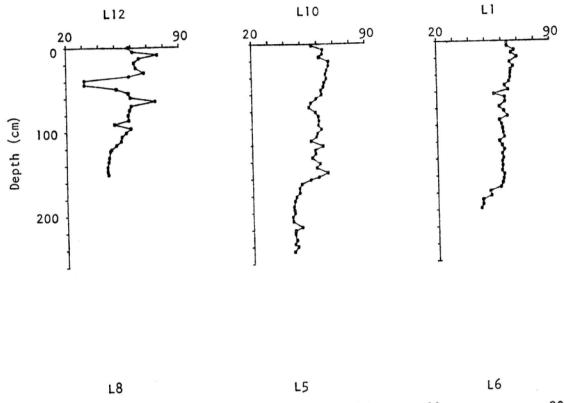
Four silt-rich intervals were found in three of the Escanaba Trough cores (L8, 22-74 cm; L11, 13-22 cm; and L12, 38-53 cm and 90-120cm). In L8, the sediments from 22-74 cm showed a series of laminations with a sharp bottom contact, suggesting a turbidite or a group of turbidites deposited in short succession. Smear slides from this interval had silty grain sizes and, when compared to the north Gorda cores, were unusual in containing 30 to 35% volcanic glass and several per cent sulfides, including rare hexagonal sulfides which may be pyrrhotite.

L12 contained two unusual silty intervals at 28-53 cm and 94-126 cm. Both intervals were silt-rich, and contained up to 25% volcanic glass and several per cent sulfides. From 28-53 cm, the sediments were better sorted and siltier than in the lower interval and hexagonal sulfides were observed. The lower interval was marked by contorted bedding. The base of the unit made a shar angular unconformity, tilted at ~30 degrees, with the underlying homogenous grey clay, possibly indicative of a slump deposit.

On the northern Gorda Ridge, cores W8 and W9 contained the silty base of a turbidite at about 130 cm which is described in the appendices as a silty laminated section. In W9, this interval extends from 123 to 130 cm. Water contents, shown in figure 4, define the extent of the clay-rich upper part of the turbidite not easily recognizable by visual examination. By this criterion, the turbidite extends from 108 to 130cm. The turbidite is composed primarily of terrigenous clastic material, 5-10 % basalt glass and about 5 % opaque material.

Water content profiles also delineate the turbidite intervals in the Escanaba Trough cores and can be used to demarcate the lithologic change visible at the base of L1, L5, L8, L10, and L12.


III.3 SOUTHERN AREA


III.3.1 ROCK/PALEO MAGNETISM

The initial magnetic susceptibility measures the response of paramagnetic and ferrimagnetic minerals to a small applied field and is sensitive to the concentration and grain size of Fe-bearing minerals. Whole core susceptibility measurements for the cores from the Escanaba Trough are shown in Figure 5. All of the cores in the central axial valley have magnetic highs at depths >150 cm (110 cm in L12), coincident with the lithologic change noted earlier. Core L7, taken in a deep sea channel SW of the mouth of the Escanaba Trough, has downcore susceptibilities with high background levels and numerous large peaks which clearly correlate to coarse silty turbidite layers, presumably reflecting channelized transport. This core and those from the flanks and uplifted basins along the axial ridge, show no clear inter-core correlations.

Core L8, located on the 40[°] 45'N dome, shows a series of large susceptibility peaks from 10-75 cm. These intervals contain numerous bands, mottles and silty laminations (see Appendix IX.2, Core Descriptions). Similar behavior is not observed in the nearby L5 core, found on the axial valley floor, although L5 clearly shows the lithologic change at 170 cm. seen in the other axial valley cores.

The cores proxial to the 41° N volcanic center (L12, L10, L2, and L1) show a degree of inter-correlation with magnetic 'events' near the surface a 60-80 cm depth (38-53 cm in L12). Nearby off-axis cores (L3 and L6) do not show similar behavior, suggesting that, if the core sedimentation rates are comparable, the source of the magnetic anomaly is confined to axial valley

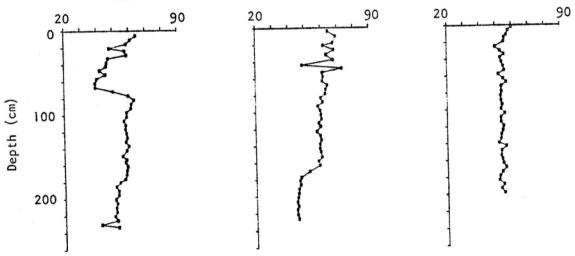


Figure 4a. Water contents from the Escanaba Trough cores. The water contents can be used to discern turbidite intervals and to determine the level of the lithologic change in the Escanaba Trough.

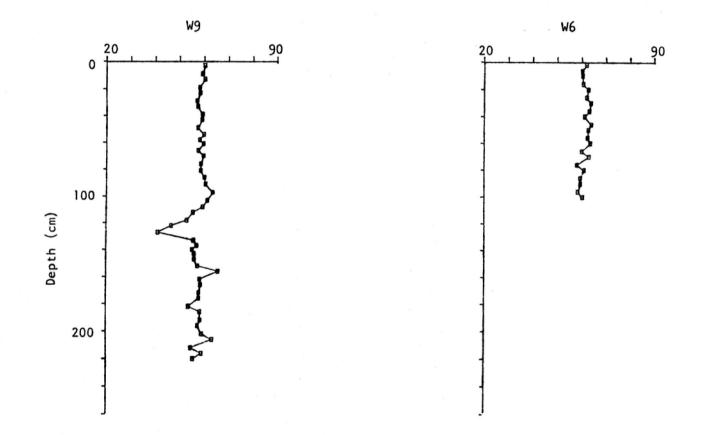


Figure 4b. Water contents from the North Gorda Ridge cores. The water contents can be used to discern turbidite intervals and to determine the level of the lithologic change in the Escanaba Trough.

sediments. Since Core L5 is located between the two domes, the lack of obvious features in Core L5 which are correlable to Cores L8 and L12 implies that the causes of the large susceptibilities in the cores on the 40° 45'N and 41° N domes are distinct.

Downcore profiles of natural remanent magnetization (NRM) intensities for individual samples from the southern Gorda cores (Figure 6) show essentially the same behavior as seen in the whole core susceptibility profiles. This indicates that the initial susceptibility is controlled by ferrimagnetic minerals (e.g., magnetites, certain sulfides) rather than by paramagnetic species, such as Fe-bearing clays or pyrites. The NRM intensities clearly show the basal lithologic change in the axial valley cores; a correlable magnetic high at ~60-80 cm between L10, L2, L1, and possibly, L12; and dramatic intensity highs at 35-50 cm in L12 and 25-70 cm in L8.

With the exception of the large peaks in L8 and L12, NRM intensities (normalized by wet weight) of the cores from the Escanaba Trough are very similar to the uppermost sections of cores taken along the Oregon margin. However, in the margin cores, Fe reduction and subsequent sulfide formation causes dissolution of the magnetic fraction and large, systematic NRM intensity decreases downcore (Karlin and Levi, 1983; Karlin and Levi, 1985). In the Gorda cores, the lack of such downcore NRM intensity changes suggests that the sedimentation regime in the Escanaba area is not subject to sulfate reduction at depth and is less reducing than in the higher productivity regions nearer shore. Thus, diagenetic sulfides might not be expected.

Downcore profiles of NRM inclinations for the various cores are shown in Figure 7. Without demagnetizations to isolate stable components of the remanence, we hesitate, at present, to make interpretations of the downcore inclination trends in terms of intercore correlations or time scale determinations. However, certain features of the profiles are worthy of note. In cores L8 and L12, the zones of anomalously high intensities and susceptibilities and low water contents have no corresponding anomalous inclinations. The lack of inclination variations within these sections is consistent with deposition of the sulfidic, glassy silt as a turbidite rather than as mass slump or debris flow. Moreover, within the anomalous zones, the inclinations among and between horizons is essentially constant, suggesting rapid deposition.

Core L12, located on the flank of the volcanic edifice, shows large variations in inclination which are significantly different than expected at the site from a geocentric axial dipole (60°) or seen in the inclination profiles of the other cores from the axial valley. The compass/tilt meter on the core barrel apparently tripped properly and showed a dip of less than 3° , suggesting that non-vertical core penetration was minimal. In the homogenous grey clay found below the steep angular unconformity at 115-120 cm, the mean inclination is relatively shallow (~45^{\circ}). Whether this feature is due to tilting of the entire sediment column or a manifestation of the ambient geomagnetic field will be unclear until we obtain dates on the cores and perform the necessary demagnetizations. However, inclinations in the zone from 85-115 cm immediately above the unconformity are highly disturbed and variable, while the NRM intensities are relatively low. Since the carbonate maxima found in the other cores (see Sediment Chemistry) is missing here, this zone may represent a mass slumping event. The mean

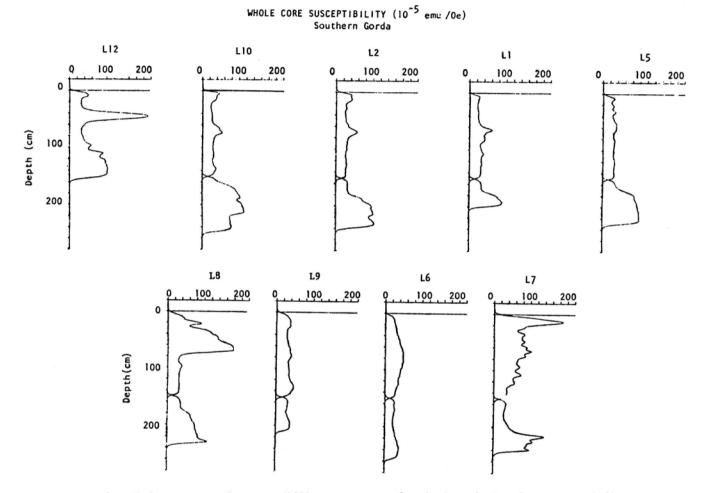
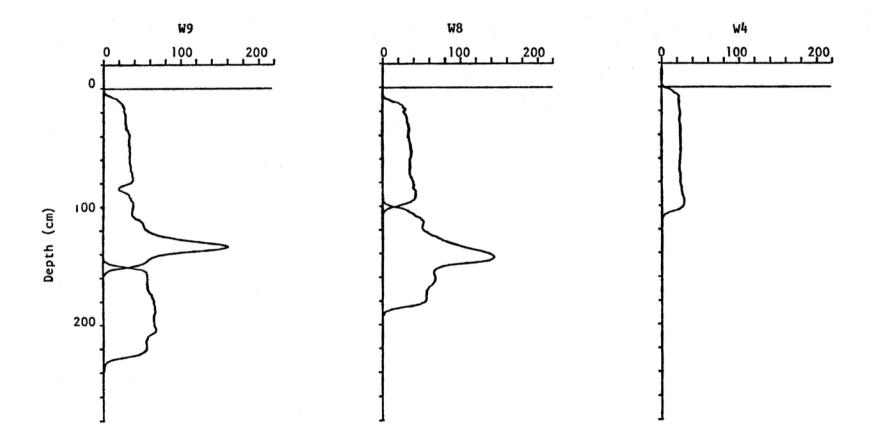



Figure 5a. Whole core magnetic susceptibility measurements for the Escanaba Trough cores. Turbidite intervals are marked by higher magnetic susceptibilities, as is the lithologic change in the Escanaba Trough.

WHOLE CORE SUSCEPTIBILITY (10⁻⁵ emu/Oe) Northern Gorda

Figure 5b. Whole core magnetic susceptibility measurements for the North Gorda Ridge cores. Turbidite intervals are marked by higher magnetic susceptibilities. 15

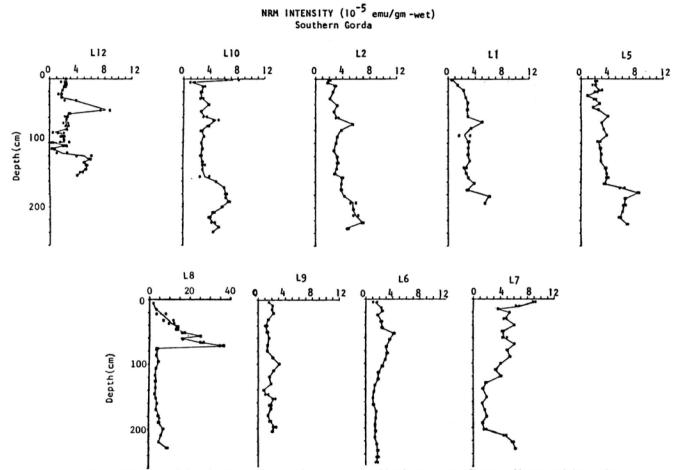


Figure 6a. NRM intensities in Escanaba Trough cores, normalized per gram of wet sediment weight. The turbidite intervals show high NRM intensities, and in addition, a magnetic high can be discerned in cores L10, L2, and L1. This high can be correlated with the turbidite interval in L12 between 38 and 53 cm. Note: Difference in L8 horizontal scale.

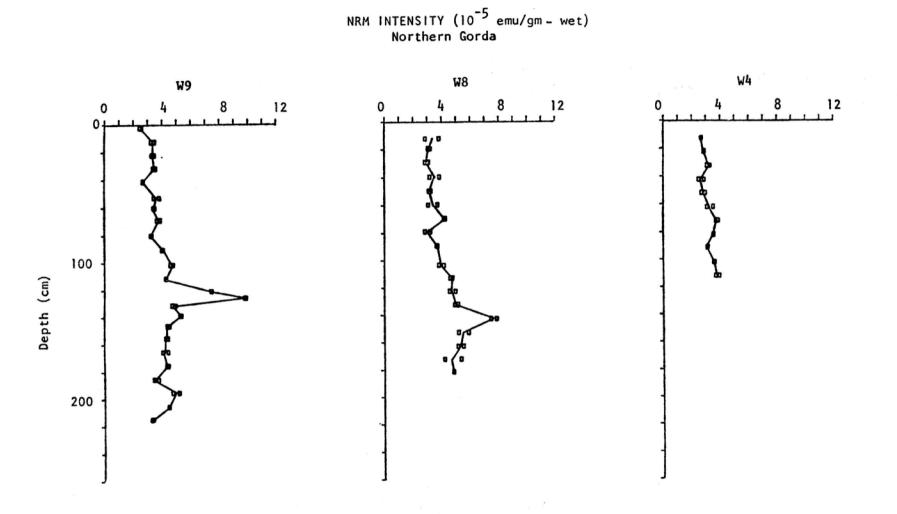


Figure 6b. NRM intensities in North Gorda Ridge cores, normalized per gram of wet sediment weight. The turbidite intervals show high NRM intensities.

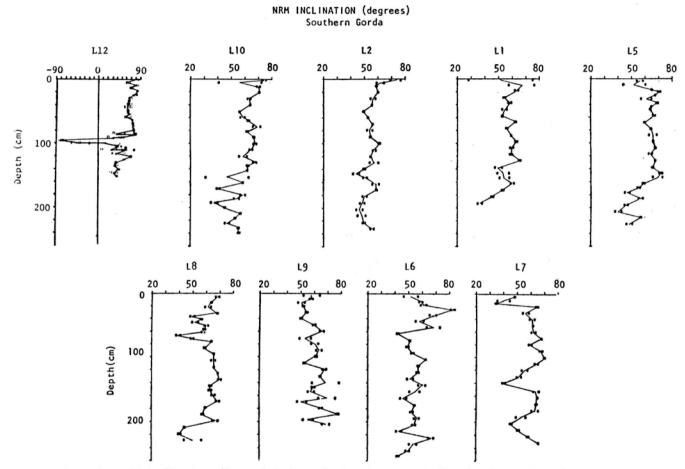


Figure 7a. NRM inclinations (degrees) in Escanaba Trough cores. A disturbed interval can be discerned between 85 and115 cm in core L12.

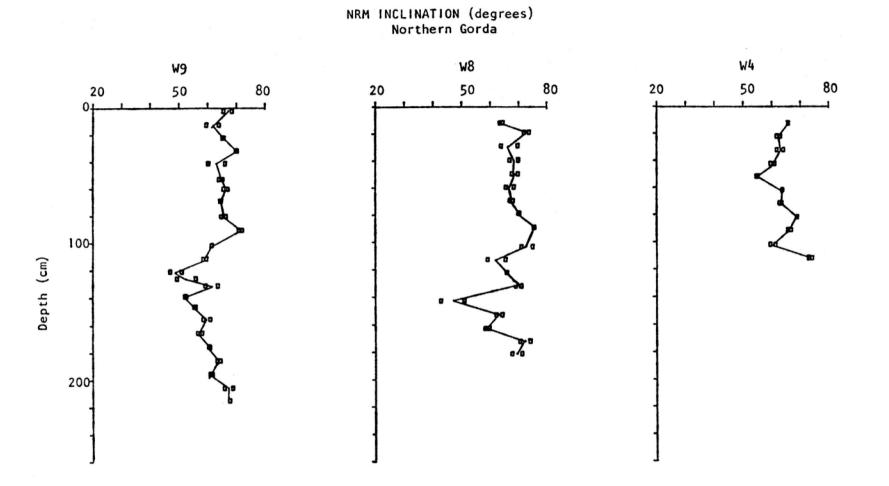
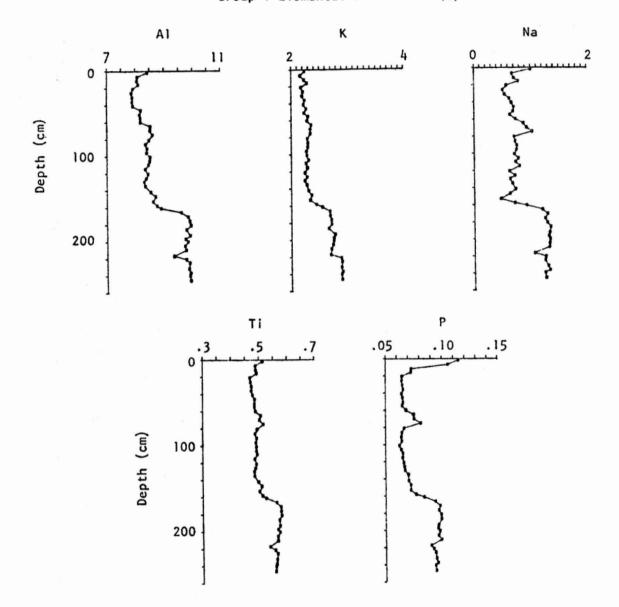


Figure 7b. NRM inclinations (degrees) in North Gorda Ridge cores.

inclination in the top 80 cm is significantly steeper $(~72^{\circ})$ than the expected dipole inclination and may be due to recent tilting of the sediments after deposition of the sulfidic turbidite. Thus, L12 may contain a record of tilting, mass slumping, and turbidite deposition, presumably associated with uplift of the dome and deformation of the surrounding sediments.


111.3.2 SEDIMENT CHEMISTRY

Bulk elemental concentrations in sediments result from the mixing of several classes of sedimentary components during deposition. For certain elements such as Mn, Fe, and S, post-depositional early diagenetic processes can modify downcore primary abundances through remobilization and precipitation reactions. At the Gorda Ridge the sediments consist primarily of a mixture of clays and other aluminosilicate detritus, biogenic planktonic material, and a small hydrothermal precipitate fraction.

Characteristic elements are often associated with each class of sedimentary material. For example, Al, Ti, Cr, and Rb are primarily associated with the detrital aluminosilicate fraction, while Ca is typically associated with calcitic biogenic debris. In addition, Mn and S are highly enriched in hydrothermal precipitates. Other elements often are combinations of more than one class. Iron, for example is one of the major components of both the detrital and hydrothermal fractions, while Si is important in both the biogenic and detrital fractions. Since most terrigenous material in the Gorda area is derived from continental volcanic sources, differentiating primary local volcanogenic sources from detrital terrigenous sources by chemical means can only be done by examining variations in suites of elements rather than by using a single chemical tracer.

In the Escanaba Trough we can distinguish two types of detrital aluminosilicates and one possible biogenic elemental association based upon an elemental correlation matrix. Three groups of elemental associations can be distinguished all having intra-group correlations greater than 0.8. The first of the detrital associations is the group of elements typical in felsic rocks: Na, Al, P, K, and Ti (Figures 8 and 9). This group is enriched in the turbidites and in the Pleistocene sediments within the lower lithologic unit. This group's enrichment in the turbidites seems due to the high abundance of feldspars in the coarse fraction of Escanaba Trough sediments and the sorting and concentration of this coarse fraction during turbidite transport. Apparently, the Pleistocene sediments (>11,000 yrs BP) are enriched by inputs from a continental source rich in these elements, since the average grain size of the Pleistocene sediments is finer than that of the Holocene section.

The second group of elements (Mg, Cr, Ni, Zn, and Ba) is more mafic and shows high correlations to water content (Figures 10 and 11). Its enrichment in the Holocene section and water content association suggests that these elements are contained in clay minerals, since fine-grained clays often have high water contents. This component is probably derived from the ophiolites of southwestern Oregon and Northern California (Karlin, 1980). The third group of elements--Si, Cu, Ba, and Pb--may primarily represent

CORE L6-85-NC 10 GC Group I Elemental Abundances (%)

Figure 8. Group I detrital elements as determined by interelement correlations in core L10. The group consists of Al, K, Na, Ti, and P and probably represents felsic detrital material.

SODIUM (%) Southern Gorda

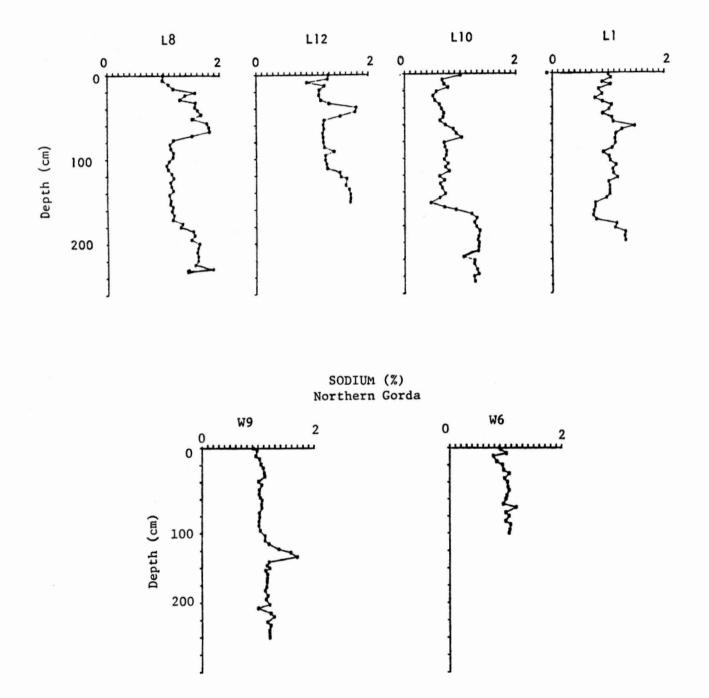


Figure 9. Variation of Group I elements (here represented by sodium) in cores from the Escanaba Trough and North Gorda Ridge. The Group I elements are enriched in the turbidite sections and in the lower lithologic unit.

CORE L6-85-NC 10 GC Group 11 Elemental Abundances

Figure 10. Group II detrital elements, as illustrated by downcore elemental variations in L10. The elements in this group are Mg, Ba, Cr, Ce, Zn, Ni, Cu, and H2O and probably represent more mafic detritus.

MAGNESIUM (%) Southern Gorda

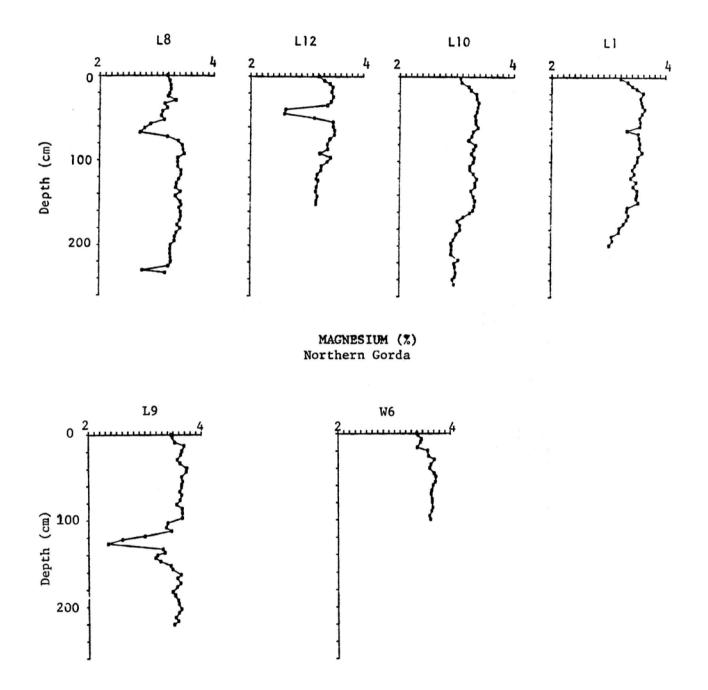
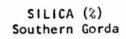
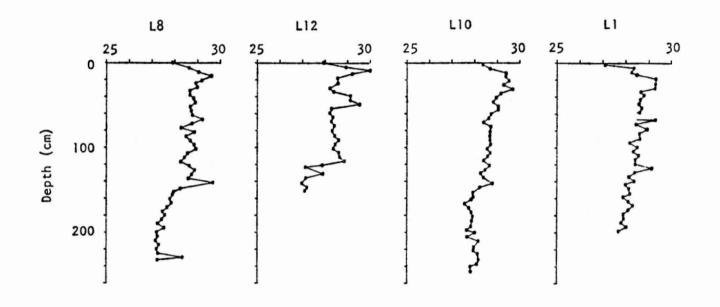



Figure 11. Variation of Group II elements as represented by magnesium in the Escanaba Trough and North Gorda Ridge cores. Turbidite intervals and the lower lithologic unit are marked by lower Group II concentrations.

biogenic input of opaline silica, barite, and organic matter rich in copper (Figures 12 and 13).

Mn is a more sensitive element than Fe to redox conditions, and was typically highest in the top most sediment samples (up to as high as 2% by weight) and decreased to low concentrations below the top few centimeters due to the reductive dissolution of Mn(IV) oxides. A distinctive hydrothermal fraction of manganese and iron oxides and hydroxyoxides could not be distinguished in Escanaba Trough sediments (Figure 14), probably because of early diagenetic processes. Mn and Fe oxyhydroxides can be easily reduced during the oxidation of organic carbon in the surface sediments. When they contact oxygenated bottom waters within the uppermost sediments, the two elements may reprecipitate. Because of this process, the surface sediments at the Gorda Ridge are enriched in manganese and may be enriched in iron (Figure 14, Appendix IX.5). It is more difficult to assess iron diagenesis because a large amount of iron is fixed in detrital silicates and will be unaffected by reductive dissolution.


Large manganese peaks occur downcore in L8 and L12, immediately beneath the turbidite sections in each core (Figure 14). These high concentrations of manganese are probably not due to hydrothermal activity, but represent trapping of a surface layer rich in manganese by the turbidite. In such a case, the surface layer is buried by the turbidite deeply enough to prevent its diffusive escape back to the ocean.


From the evidence we have assembled so far, the sulfur record in the sediments of the Escanaba Trough may preserve a record of hydrothermal plume activity in the Escanaba Trough (Figure 15). Hydrothermal sulfur occurs in a reduced form, as sulfides, and will not be dissolved during the reductive diagenetic processes that destroy the Mn and Fe records. The sulfur record may be confused, however, by reduction of porewater sulfate to a sulfide and its precipitation in the sediments. In such a case, one would expect the sulfur content of the sediments to increase downcore. As explained in the magnetics section, one would also expect the sediment magnetizations to decrease because of the dissolution of magnetite and transformation into iron sulfides. In the Escanaba Trough neither feature is observed. The magnetization intensities, aside from lithologic changes, is roughly constant. Core profiles of sulfur show peaks rather than a monotonic increase. Part of the variation of the sulfur records is due to the sulfide-enriched turbidites in L8 and L12, but not all the character of the records can be due to this. For example, sulfur is higher than background sedimentary values immediately below the turbidite in L8, as well as at a depth of 220 cm. In the northern end of the Escanaba Trough the records are marked by a single broad peak, which is roughly correlable. In the absence of evidence to indicate sulfate reduction in porewaters, we interpret these sulfur peaks to indicate periods of high hydrothermal activiity.

CORE L6-85-NC 10 GC Group 111 Elemental Abundances

Figure 12. Group III elements in core L10. The elements in this group include Si, Ba, Cu, Pb, and Ce, as well as H2O and opal. This fraction may represent biogenic siliceous debris.

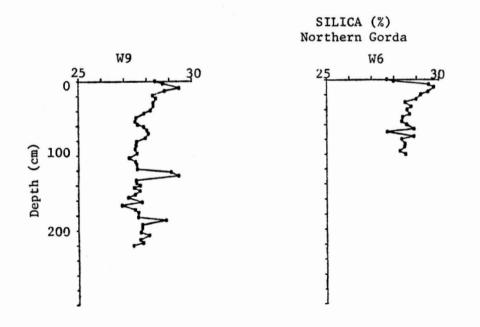


Figure 13. Variation of Group III elements in Escanaba Trough and North Gorda Ridge cores, as represented by Si. The Holocene intervals in all the cores apparently are enriched in this Group.

27

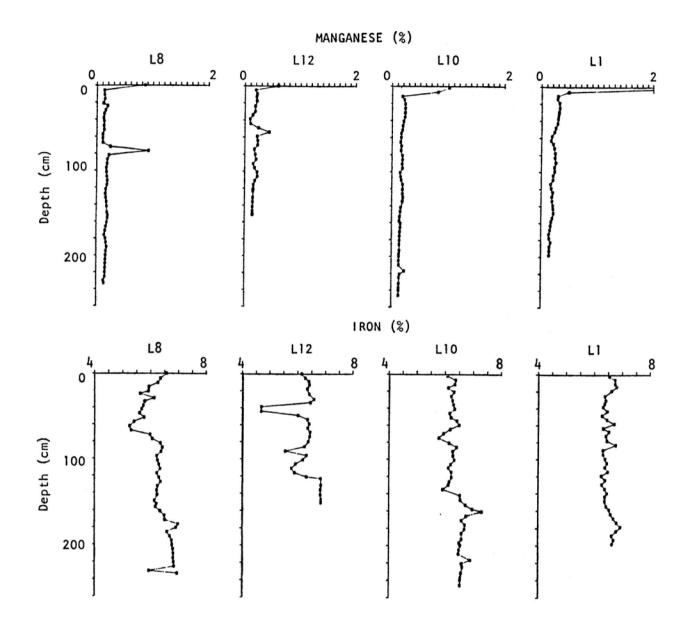


Figure 14a. Fe and Mn contents of Escanaba Trough cores. Normally these elements are diagnostic of hydrothermal events. Sediments of the Gorda Ridge are sufficiently reducing, however, that Mn has been reduced and remobilized to the sediment-water interface. Downcore Mn highs mark surface layers trapped underneath turbidites. Iron contents of the detrital fraction are sufficiently high to preclude interpretation of the downcore variation as a hydrothermal signal.

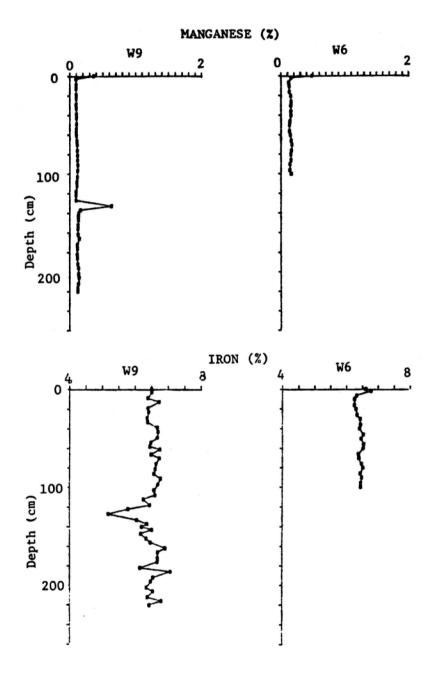


Figure 14b. Fe and Mn contents of North Gorda cores. Normally these elements are diagnostic of hydrothermal events. Sediments of the Gorda Ridge are sufficiently reducing, however, that Mn has been reduced and remobilized to the sediment-water interface. Downcore Mn highs mark surface layers trapped underneath turbidites. Iron contents of the detrital fraction are sufficiently high to preclude interpretation of the downcore variation as a hydrothermal signal.

SULFUR (%) Southern Gorda

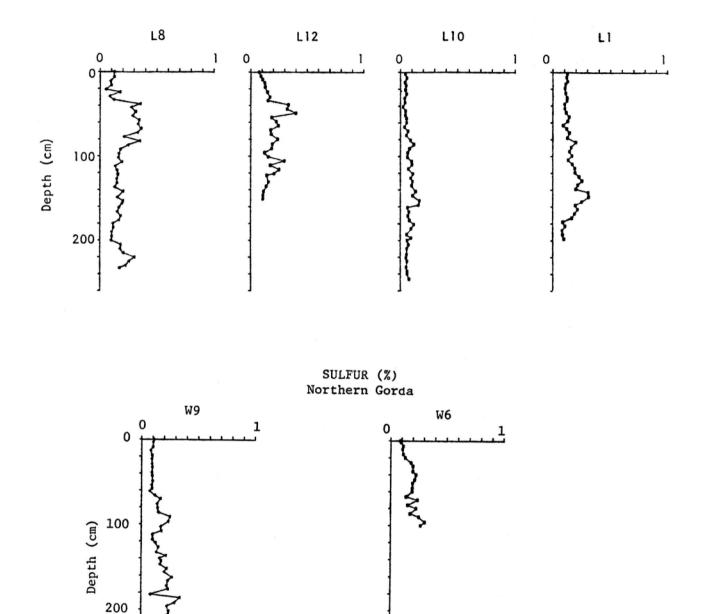


Figure 15. Sulfur contents of Escanaba Trough and North Gorda Ridge cores. Sulfur is elevated in the Escanaba Trough turbidite sections due to their enrichment in sulfides. Sulfur is also enriched downcore probably due to preservation of sulfur from hydrothermal plumes

III.4 NORTHERN GORDA RIDGE

III.4.1 PALEOMAGNETISM

Whole core susceptibilities and NRM intensities for cores W4, W8, and W9 from the Northern Gorda Ridge are shown in Figures 5 and 6. As in the Southern Gorda area, NRM intensities are comparable to values found in the top layers of sediments from the Oregon margin. Similarly, a downcore intensity decrease in these cores is not observed; therefore, redox conditions in the Northern Gorda sediments do not seem to be conducive to diagenetic sulfide formation. Also, susceptibility and NRM trends track each other well in each of the cores, suggesting that the susceptibilities are controlled by the ferrimagnetic fraction.

The NRM intensities and susceptibilities of cores W8 and W9 show similar downcore behavior. Intensities are low in the top 90 cm of W8 and W9, then increase. A large peak is associated with silty layers at 140 cm in W8 and 120 cm in W9, presumably due to turbidite deposition (see Sediment Chemistry). Below these intervals, the magnetic properties show higher values than in the top of the section. Core W4 (0-110 cm) has similar values to the top 120 cm of W8, perhaps implying a somewhat higher sedimentation rate for W4.

III.4.2 SEDIMENT CHEMISTRY

Sediments in the northern Gorda Ridge have similar bulk chemical compositions to cores from the south. The same three groups of elements, two detrital and one biogenic can be observed here as well as in the south (Figures 8 through 13). In the northern cores, however, Ba and Zn are much more strongly associated with what may be termed the biogenic fraction of the sediments. Variations in sulfur content can also be observed in the northern cores, and are strongest in the axial core W6. Unlike the cores to the south, there is no sulfur signal associated with the turbidite in W9. < W9 has much higher calcite at depth than the Escanaba Trough cores, but high calcite values are not observed in W6. We believe that the lack of calcite variation in W6 is due to a much higher sedimentation rate than in W9, as will be discussed in the next section.

IV. DISCUSSION

IV.1 AGES OF THE GORDA RIDGE SEDIMENTS

Cores in both the northern Gorda Ridge and in the Escanaba Trough can be correlated by their magnetic and chemical properties. Correlatable layers in several cores were dated by C-14 for an absolute time scale which can be compared with other stratigraphic methods such as O-18 stratigraphy. The results of the radiocarbon dating are presented in Table 1 and in Figures 16 through 19. All the cores dated have non-zero age surface sediments, a feature common to C-14 dating of sediments where bioturbation causes mixing of old and new carbon. We have estimated surface ages for each core (Table 1) based upon interpolation of sediment-depth curves (Figures 16-19) to zero depth, assuming the ratio of new/old carbon was constant through time. The surface ages were then subtracted from the raw ages at each depth to determine the actual age of deposition.

In L1 and L8 from the Escanaba Trough, we find relatively constant sedimentation rates outside of the instantaneously deposited turbidite intervals. The anomalously old sediments in L1 (Figure 16) which were identified as a turbidite from their magnetic properties fits well with this interpretation. Turbidites are primarily older sediments which have been reworked and redeposited. In L8 (Figure 17), we have dated the time of deposition of the turbidite by dating the interval immediately underneath. After subtracting the surface age, we obtain an age of 2400 years before present for the event.

Core L12 (Figure 18) has the most complicated age profile, which fits with the complexity of the paleomagnetic signals in the core. The age profile is inverted between 81 and 95 cm. This interval had an extreme amount of scatter in measured inclinations and an anomalously shallow mean inclination. The interval above this section may have behaved as a relatively competent slump block that slid over and deformed the immediately underlying sediments. If this interpretation is correct, the slumping occurred about 1700 years ago. The turbidite at 40-50 cm occurred ~3000 years ago, based upon dating of the immediately underlying interval.

We can extrapolate ages of correlatable horizons in each dated core to determine if the intervals behave as time stratigraphic events (Table 2). Provided the correlation horizons are coeval, they can be used to establish a time framework which can be extended to the undated cores. We have performed this extrapolation on two horizons that were evident in most of the cores in the area: the calcite increase and the underlying lithologic change to homogenous grey clay. The results indicate that the horizons mark time events, with the calcite horizon dating at ~7100 years old and the lithologic change at ~11,000 years ago, i.e., the Pleistocene-Holocene boundary. We have used the age of the lithologic change to obtain average Holocene sedimentation rates (Table 3).

IV.2 EVIDENCE OF VOLCANISM AND HYDROTHERMAL ACTIVITY

In the northern portion of the Escanaba Trough, the axial valley cores L10, L2, and L1 show NRM and susceptibility highs, water content lows, and enrichments in the elements Na, Al, P, K, and Ti at ~60-80 cm depth. While there is no visual evidence of a lithology difference at this depth, water contents and elemental changes are consistent with this layer being a distal turbidite containing an enhanced felsic component. From the depth of the layer relative to the surface, and the levels of the downcore carbonate and lithologic changes, this layer seems to have been deposited at the same time

CORE	DEPTH	RADIOCARBON AGE	ZERO-AGE*	CORRECTED AGE**
Ll	0-10 65-75 115-125 150-160 190-200	3600 8410 9670 12380 15570	3200	400 5210 6470 9180 12370
L8	0-12 70-80 110-120 180-190 224-234	4140 6150 8950 14430 18650	3700	440 2450 5250 10730 14950
L12	0-10 53-63 81-95 120-130	5360 7990 6720 16500	5000	360 2990 1720 11500
W8	0-10 40-50 110-120 209-219	4530 12090 17240 26500	3500	1030 8590 13740 23000

TABLE 1. RADIOCARBON AGES OF DATED SAMPLES

* Extrapolated radiocarbon age for freshly deposited sediment

** Radiocarbon age with zero age subtracted--the best estimate of actual age of sample

TABLE 2. ESTIMATED AGES FOR EVENTS BASED ON C-14 PROFILES

EVENT	CORE	AGE (years)
CALCITE INCREASE	L1 L8 W9	7200 6500 7500 7100 MEAN
LITHOLOGIC CHANGE	L1 L8 L12	11000 10800 11500 11100 MEAN
40 ⁰ 45'N TURBIDITE	E L8	2400
41 ⁰ N TURBIDITE	L1 L12	3000 3000

TABLE 3. ESTIMATED SEDIMENTATION RATES FOR GORDA RIDGE CORES

CORE	SEDIMENTATION RA	TE (CM/1000YR.)
	WITH TURBIDITES	WITHOUT TURBIDITES
L1 L2 L5 L7 L8 L10 L12	16.0 16.5 13.4 18.9 17.7 15.3 11.3	15.1 15.2 >9. 13.0 10.
W6 W9	15.0 5.6	

* MEAN SEDIMENTATION RATE OVER HOLOCENE INTERVAL (0-10,000 YRS B.P.)

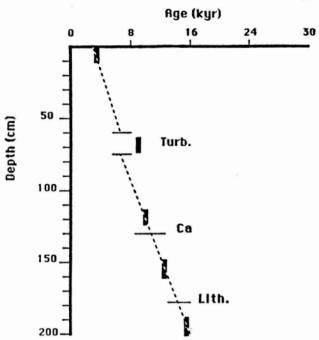


Figure 16. Age-depth profile of gravity core Ll based upon radiocarbon dating. Turb marks the depth of a distal turbidite located by magnetics. Note the anomalous age of the sample in this interval. Ca marks the level of calcite increase in the core and Lith marks a prominent lithologic boundary.

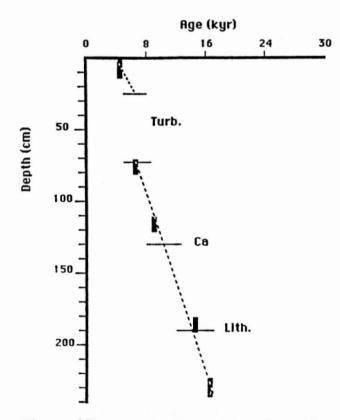


Figure 17. Age-depth profile of gravity core L8. Turb marks the major turbidite interval noted in the core descriptions. Ca and Lith mark the same boundaries as in core L1

35

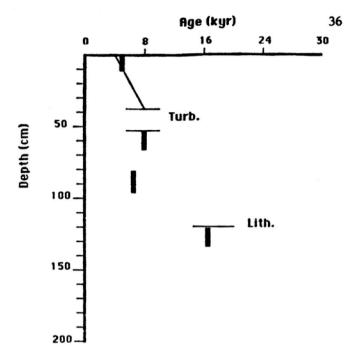


Figure 18. Age-depth plot of radiocarbon data for gravity core L12. Turb marks a prominent turbidite from 38-53 cm in the core, while Lith marks the lithologic boundary seen in all Escanaba Trough cores. Note the age inversion at 81-95 cm in a section with contorted bedding and anomalous magnetic inclinations. This unit has apparently been distorted by a slump deposit sliding over it.

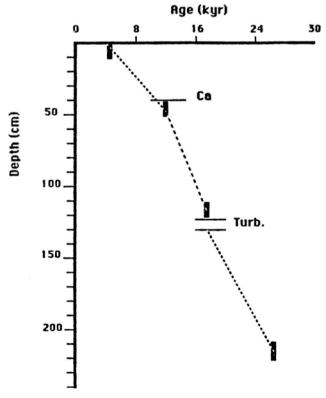


Figure 19. Age-depth plot of radiocarbon data for core W9 on the northern Gorda Ridge. Note the slower overall sedimentation rate. Ca marks the calcite increase noted also in the Escanaba Trough cores and Turb marks a prominent turbidite.

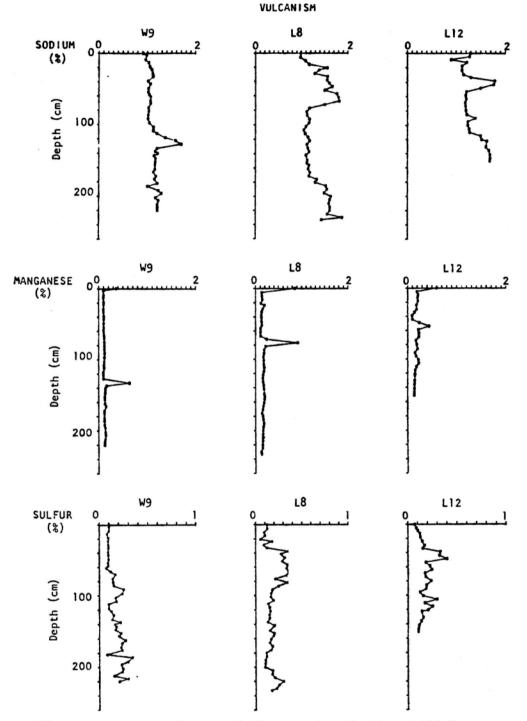


Figure 20. A comparison of two turbidite sections in L8 and L12 from the Escanaba Trough to W9 from the North Gorda Ridge. All three turbidite sections are from local flows, but only L8 and L12 turbidites are related to volcanic centers. The three cores show the characteristic enrichment of felsic elements in the turbidite sections and all have trapped a surface Mn-rich layer underneath them. Only the turbidites associated with the volcanic centers are enriched in sulfides, however.

37

in each of the cores, and in fact has the same radiocarbon 3000 yr age in cores L12 and L1. Since the feature was isolated to the Northern Escanaba Trough, it seems reasonable to ascribe a local source for the turbidite.

Core L12, located next to he 41° N dome, possesses several interesting features. At 40-50 cm, the glassy, sulfidic silt zone has low water contents, an enriched felsic component, and low inclinations which are consistent with deposition as a proximal turbidite, presumably shed from the 41° N dome. On visual examination, the sulfides occur both as discrete silt -sized particles and as inclusions in volcanic glass. The hexagonal shape of some of the sulfide grains is suggestive of high temperature pyrrhotite (Kissin and Scott, 1982). These features imply that the sulfides probably are derived from a high temperature hydrothermal source.

The interval from 85-115 cm in L12 contains contorted bedding, disturbed inclinations, sulfide peaks, and a lack of carbonate relative to L1, L2, and L10. We interpret this interval as a slump deposit related to the nearby volcanic edifice. The loss of carbonate and the foreshortening of the core features relative to the other cores suggests some erosion associated with this event. The base of this section is underlain by a sharp angular unconformity with the underlying homogenous clay having shallow inclinations by about 30 degrees from the expected field. Lacking good time control and definitive intercore inclination correlations, we hesitate to ascribe too much significance to this anomaly presently, but, if verified, L12 would contain a record of tilting associated with the volcanic intrusion and may allow us to date the sequence of events.

Core L8, located next to the 40° 45' N dome, also contains evidence of a volcanic shedding event in the upper part of the core. This feature may represent a large mass slump or series of mass wasting events in rapid succession, because of the irregular laminations and bedding, the thick zone of disturbance, and anomalously shallow inclinations. The chemical characteristics of this event(s) area similar to those observed in the 40-50 cm interval of L12. However, based on the carbonate stratigraphy, the timing of this event (at ~2400 yrs BP) does not seem to coincide with the event recorded in L12. Moreover, core L5, located midway between the two edifices, shows no corresponding anomaly in either magnetics or lithology. Thus, this event may have been localized to the 40° 45'N dome, and younger than the event on the 41° N dome.

We suggest that these Holocene turbidites or mass-flow deposits in the Escanaba Trough mark periods of eruption and hydrothermal activity at the different volcanic centers in the axial valley. The reasons we make this interpretation are first, flow deposits from different parts of the valley are locally confined. No single valley-wide event has been found, as would be expected with a major turbidity event from the walls of the Escanaba Trough or with one entering from the outside. Second, in the one flow deposit we believe we can correlate between 4 cores (L12, L10, L2, and L1), the size and coarseness of the deposit decreases away from the 41° N volcanic center as would be expected if it had originated there. Finally, flow deposits found proximally to the 40° 45' N center and the 41° N center (cores L8 and L12) are enriched in sulfides (possibly, high temperature pyrrhotite) and volcanic glass. The obvious source of the glass and

sulfides is the volcanic center, most probably during the eruptive phase of volcanism.

The enrichment of the coarse-grained sulfides and glass could conceivably be caused by hydraulic sorting during turbidite transport of old axial valley sediments not associated with a given volcanic event. However, there are several reasons why we feel that this interpretation less than satisfactory. Pyrohotite and other high temperature sulfides are unstable and rapidly invert to pyrite or oxidize, depending on geochemical conditions in the sediment. These minerals are uncommon in marine sediments, and were not observed elsewhere, either downcore or in other cores in the area. Furthermore, we can compare the turbidite in W9 on the North Gorda Ridge to those in the Escanaba Trough, since it is of similar size and its origin is local to the northern axial valley, though it is not near a volcanic center. As Figure 20 shows, the turbidity flow in W9 also concentrates the felsic (Group I) detrital components as do the Escanaba Trough flows in L8 and L12, but it does not contain elevated contents of sulfur. Smear slides of the W9 turbidite also showed <10% volcanic glass, as compared to 25-35% glass in the Escanaba Trough turbidites. Thus, the simplest explanation for the sulfide and glass enrichments is that the source is a locally-derived volcanic with associated high temperature activity.

If the tuffaceous turbidity flows and other mass wasting events indeed mark eruption events, longer sediment records obtained during future cruises should allow us to estimate the periodicity of volcanic eruptions within the Escanaba Trough. This information is critical for estimating the extent of possible polymetallic sulfide reserves in the axial valley.

IV.3 PLUME-RELATED DEPOSITION OF HYDROTHERMAL MATERIAL

As discussed in the chemistry section, hydrothermal plumes may leave their mark as downcore variations in sulfur, if not obscured by early diagenetic reactions (Figure 15). If this interpretation is correct, sulfur profiles should record when high hydrothermal activity has occurred in the Escanaba Trough.

The southern and northern parts of the Escanaba Trough, around the 40° 45'N and 41° N volcanic edificea, respectively, have different records of plume activity as well as different tuffaceous turbidite records. As measured in core L8, there is a sulfur peak at 220 cm or roughly 15,000 years ago by radiocarbon dating. In addition, sulfur contents of the sediments are high immediately under the turbidite section and peak at 82 cm. These sulfur increases may imply that hydrothermal activity at the 40° 45' N edifice increased immediately prior to a major phase of local volcanic activity. Such an increase would be expected if surface volcanic activity were preceded by intrusion of hot rock at depth. Based upon our correlations, the age of the increase in hydrothermal activity occurred at about 3000 years ago, or about 600 years before the turbidite event.

There is a peak in sulfur content in the northern Escanaba Trough cores (L1, L10, and L12) immediately above the lithologic change. Part of the peakiness may be due to differing background sulfur contents in the two sedimentary units or to variations in sedimentation rates. In this case, low sulfur values below the lithologic change would occur because of dilution with material having low sulfur. However, this hypothesis does not explain why the sulfur contents systematically decrease upcore after the initial peak. If further work substantiates that the peak is in fact due to an increase in sulfur deposition and not due a dilution or diagenetic effect, the data would suggest that a period of hydrothermal activity occurred at 41° N about 10500 years ago.

V. DIRECTIONS OF FUTURE WORK

Several avenues of future work are suggested by the 1985 studies we have completed. First and most important is to obtain more and longer cores from the Escanaba Trough. We do not yet have sufficient core coverage to determine whether other Escanaba Trough volcanic centers have been recently active, nor do we have long enough records to determine the periodicity of volcanic activity at any of the domes.

Studies of the sulfides and glass in the turbidites should also prove fruitful, to determine whether different types of hydrothermal activity can be discerned and to determine the evolution of volcanism at the ridge crest. In addition, it is at present unclear what minerals in the turbidite sections give rise to the large magnetic intensities of the intervals. More work is needed to identify whether the signal arises from oxides or sulfides.

VI. CONCLUSIONS

Our preliminary study of sediments in the Escanaba Trough has shown that there has been both volcanism and hydrothermal activity in the last 10,000 years at two volcanic edifices; at 40° 45' N about 2400 years ago, and at 41° N about 3000 years ago. In addition to these late Holocene events, there may have been another period of low temperature hydrothermal activity roughly 18,000 years ago at 41° N. At the edifice at 41° N, where we have adequate core coverage for comparison, the observed events can be readily correlated by both rock/paleomagnetism and chemical analyses. We do not have sufficient cores, however, to determine whether any of the three other volcanic edifices are recently active. We point out, however, that a turbidite observed in L11, near the 40° 55' N edifice, may indicate recent activity there. More coring is necessary to determine the extent and duration of hydrothermal activity and, hence, sulfide deposition, at the other domes throughout the valley.

VII. ACKNOWLEDGEMENTS

This document is the final report submitted to the Oregon Department of Geology Mineral Industries as fulfillment of obligations for contract 63-630-8507 (OSU No. 30-262-9470) to Oregon State University. We thank the U.S.G.S, particularly, the Chief Scientists of cruise L6-85-NC, Mark Holmes and Jan Morton, as well as the captain and crew of the R/V LEE for the opportunity to obtain cores form the area. We also thank Dennis Schultz, Greg Campi, and Gina Frost for their help with the analyses. University of Washington School of Oceanography contribution No. 1659 and Oregon State University Technical Report No. OSU 86-14.

VIII. REFERENCES

Atwater, T.M., and J.D. Mudie, Detailed near bottom geophysical study of the Gorda rise, J. Geophys. Res., 78, 8665-8686, 1973.

Barnard, W.D., and McManus, D.A. Planktonic foraminifera-radiolarian stratigraphy and the Pleistocene-Holocene boundary in the northeast Pacific. Geol. Soc. Amer. Bull., 84, 2097-2100, 1973.

Duncan, J.R., G.A. Fowler, and L.D. Kulm, Planktonic foraminiferanradiolarian ratios and Holocene-Late Pleistocene deep-sea statigraphy off Oregon, Geol. Soc. Amer. Bull ., 81, 561-566, 1970.

Dymond, J., Corliss, J.B., and Stillinger, R. Chemical composition and metal accumulation rates of metalliferous sediments from sites 319,320, and 321. in Yeats, R.S., Hart, S.R., et al Init Repts DSDP leg 34 (Washington, U.S. Government Printing Office) 575-588, 1976.

Fowler, G.A. and L.D. Kulm, Foraminiferal and sedimentological evidence for uplift of the deep-sea floor, Gorda rise, northeastern Pacific, J. Marine Res., 28, 321-329, 1970.

Heath, G.R., T.C. Moore, and J. P. Dauphin, Late quaternary accumulation rates of opal, quartz, organic carbon, and calcium carbonate in the Cascadia Basin Area, Northeast Pacific, Geol. Soc. Amer. Mem., 145, 343, 1976.

Heinrichs, D.F., More bathymetric evidence for block faulting on the Gorda Rise, J. Marine Res., 28, 330-335, 1970.

Karlin, R. Sediment sources and clay mineral distributions off the Oregon coast. J. Sed. Pet., 50 543-560, 1980.

Karlin, R., and S. Levi. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 303 327-330, 1983.

Karlin, R., and S. Levi. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. J. Geophys. Res., 90 10,373-10,392, 1985.

Kissin, S.A., and Scott, S.D. Phase relations involving pyrrhotite at temperatures below 350 ° C. Econ. Geol., 77 1739-1754, 1982.

Lyle, M. The brown-green color transition in marine sediments: a marker of the Fe(III)-Fe(II) redox boundary. Limnol. Oceanogr, 28, 1026-1033, 1983.

Malahoff, A., R. Embley, S. Hammond, W. Ryan and K. Crane, Juan de Fuca and Gorda ridge axial morphology and tectonics from combined SEABEAM and SEA MARC data, EOS, 63, 1147, 1982.

McManus, D.A., Physiography of Cobb and Gorda rises, northeast Pacific ocean, Geol. Soc. Am. Bull., 78, 527-546, 1967.

Moore, G.W., Sea-floor spreading at the junction between the Gorda rise and Mendocino ridge, Geol. Soc. Am. Bull., 81, 2817-2824, 1970.

Moore, G.W., and G.F. Sharman, Summary of SCAN Site 4. in McManus, D.A., et al., Init Repts, DSDP leg 5. Washington (U.S. Govt Printing Office), 761-773, 1970.

Phipps, J.B., Sediments and tectonics of the Gorda-Juan de Fuca Plate. Corvallis, Oregon State University Ph.D. Thesis, 118 pp, 1974.

Riddihough, R.P., Gorda plate motions from magnetic anomaly analysis, Earth Planet. Sci. Lett., 51, 163-170, 1980.

Solano-Borrego, A.E., Microseismicity on the Gorda ridge, M.S. Thesis, Oregon State University, Corvallis, Oregon, 1982.

Spigai, J.J. Marine geology of the continental margin off southern Oregon. Corvallis, Oregon State University Ph.D. Thesis, 214pp, 1971.

IX. APPENDICES

IX.1 CORE LOCATIONS AND RECOVERY

CORE Name	LATITUDE Degrees N	LONGITUDE Degrees W	CORELENGTH CM.
NORTH GORDA			
W8508AA 4 GC W8508AA 5 GC W8508AA 6 GC W8508AA 8 GC W8508AA 9 GC	42° 56.55′ 42° 56.47′ 42° 57.33′ 43° 01.43′ 43° 01.80′	126 [°] 32.06' 126 [°] 31.99' 126 [°] 34.18' 126 [°] 36.47' 126 [°] 34.73'	119 155 107 184 227
ESCANABA TROUGH			
L6-85-NC 1 GC L6-85-NC 2 GC L6-85-NC 3 GC L6-85-NC 4 GC L6-85-NC 5 GC L6-85-NC 6 GC L6-85-NC 7 GC L6-85-NC 8 GC L6-85-NC 9 GC L6-85-NC 10 GC	$\begin{array}{rrrr} 41^{\circ} & 07.21' \\ 41^{\circ} & 01.73' \\ 41^{\circ} & 01.66' \\ 41^{\circ} & 01.25' \\ 40^{\circ} & 51.04' \\ 41^{\circ} & 00.52' \\ 40^{\circ} & 31.50' \\ 40^{\circ} & 44.52' \\ 40^{\circ} & 44.47' \\ 41^{\circ} & 00.55' \\ 40^{\circ} & 53.50' \end{array}$	$127^{\circ} 30.18'$ $127^{\circ} 26.29'$ $127^{\circ} 18.47'$ $127^{\circ} 41.13'$ $127^{\circ} 30.31'$ $127^{\circ} 39.24'$ $127^{\circ} 42.33'$ $127^{\circ} 31.29'$ $127^{\circ} 41.11'$ $127^{\circ} 27.05'$ $127^{\circ} 29.00'$	200 238 240 3 229 259 241 234 211 249 31
L6-85-NC 12 GC	41 [°] 00.44′	127 [°] 29.86′	154

IX.2	С	ORE D	ESC	RI	РТІ	ON	s	0.				<i>.</i>									Core No. W8508AA-4 GC
								ou	s	m	at										Sheet _1 of _1
	Interval (cm)	Color	ont d	ac B	tΓ	2	Т	Т	T	¥	Π						d bed lt				X– Present C– Common A–Abundant R–Rare
	<u><u> </u></u>	Color	ا ها	5	Ê Ş	2 3	ā	27	sp	Sill	Ĕ	Ъ	so	sil	Ŭ	lar	gr	×	Ĕ	٤	Remarks
		10 cm																			<u>Section I 10-113 cm</u> Top 10 cm went to Carey for faunal analysis.
					R	R-C			C	•					×X						10-113 cm 5GY 5/2 greenish gray clay, becoming slightly silty at base. Open holes (worm tubes?) about 1-2 mm in diameter entire length of core, but more abundant from 10-25 cm, non-calcaleous throughout.
		60 cm			R	R-C	c		c	с											ss:10, 60, 110 cm
		110cm			R	R-C		C C A	R	R				×	×						
OSU 2078																					

							Č		•••	-	ľ	_										Core No. W8508AA-5 GC
				1	Bi	og	er	າດ	us	5	m	at										Sheet of
(m)	Co	n	a											Gre	air	ı	S	itr	uc	lur	e	X-Present C-Common
val				led	F	nan			E	les	LAGER	1	F	514	2e			bed	P	es	den	A – Abundant R – Rare
Interval (cm)	Color	shar	grad	mott	forar	calc	pter	b	diato	spicu	Silico	des F	grave	sand	silt	clay	lamir	brg	× be	mott	homogen a	Remarks
	0											-										Section I 0-154 cm
	10 cm				R	R		с	A	c	с	c				× 					× 	0-1 cm 10yr 3/2 very dark grayish brown clay, non-calcareous. Transition sharp.
									,			Tooth Pick?								-		1-154 cm 5GY 5/2 greenish gray clay throughout becoming slightly more silty at base. Open holes (worm tubes?) common to 85 cm, possibly deeper, most commonly 1-2 mm, but some 3-4 mm wide. Homogeneous. At 144-145 cm a faint gray layer of 5y 4/1.
	60 cm				R	Rć		R	с	R	c	v										<pre>145-154 cm blebs of silty material in clay matrix, non-calcaleous except at base, slightly calcareous. ss: 10, 60, 110 150 cm</pre>
	110 cm				R	R-c		R	c	R	Ŕ	C										
	150				RE	R-C		R-C	RE	R	R	c			×	×					×	

	CORE LOG	
	C	Core No. <u>W8508AA-6 GC</u> Sheet of
Interval (cm) sharp foram foram	Grain Structure	X – Present C – Common A – Abundant R – Rare
harp notite	calc nanr rad diatom spicules sand gravel silt azis sand gravel azis homogen homogen	Remarks
	I I I I I I I I I I I I I I I I I I I	Section I 0-103 cm
	R = R = C = R = C = X = X = X = X = X = X = X = X = X	0.0-0.5 cm 10yr 3/2 very dark grayish brown clay, homogeneous, transition gradational. 0.5-5 cm 5y 4/2 olive gray clay, slightly silty, gradational transition. 5-103 cm 5GY 4/2 greenish gray slightly silty clay, becoming slightly darker and more silty at base. Subhorizontal worm burrow at 41-42 cm. Open worm holes approximately 3-5 mm diameter at 51, 53, 59, 66, 72 cm. Unit mottled with small black blobs below about 40 cm. smear slides: 0, 50, 100 cm

47

Core No. W8508AA-8 GC

				1	Bi	oa	er	າດ	us		m	at											Sheet _1 of _2
Interval (cm)	Co	n	a		_	_	_		Γ				(Gro							ur	-	X Broost C Common
- -		_	_	_		nanno				S	Ne	r	L	siz	ze	_	ſ	Ŀ			s	en	X— Present C— Common A— Abundant R— Rare
ervo		5	P	ttle	E	L U	-		tor	S	1477	(NJ	vel	ק		>].g			bed	ttle	bou	A - Abunadht R - Rare
Inte	Color	sho	gro	mottled	for	cal	pte	rad	did	spi	LAG	-Stag	gra	sar	silt	망	5		5	×	Ê	homogen	Remarks
0											SILICO F	PLANT 7											Section II 10-99 cm
					1	R		R	С	R	R	C											Top 10 cm to D. Carey to do benthic organism sampling.
95 ⁻	in				- 0	C						D Toomt Rick?			x	×					×		10-99 cm 5y 4/1 dark gray silty clay, mottled throughout. Slightly more yellowish section 32-67 cm Large open worm tubes about 5 mm at 39, 63, and 73 cm. Prominent black mottle at 66 cm Disburbed soupy section at 82- 86 cm. ss: 10, 95 cm.

Core No. W8508AA-8 GC

Enderside Indition Grain Structure X- Present C- Common Image: Structure Image: Structure Image: Structure Image: Structure X- Present C- Common Image: Structure Image: Structure <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>m</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th>_</th> <th></th> <th>Sheet _2 of _2</th>	2									m						_			_		Sheet _2 of _2
	сп (С	on	tac	t	ouu				LANS'	2		Gra siz	ir ze	ו	S	tru		lur	e C	X-Present C-Common
	rval		le		ted				Eo	RLAGO	Files	/el	-			Ē	bed	ed	tles	apor	A – Abundant R – Rare
	 Inte	Color	pha	Ъb	õ,		ptei	rad	diat	Spic	(con	grav	san	silt	clay	lam	grd	ч х	mot	роп	Remarks
										,											
IISCER C R $ C$ $IISCERAAAIISCERIISCERAAAIISCERIISCERAAAIISCERIISCERAAAIISCERIISCERAAAIISCERIISCERAAAIISCERIISCERAAAIISCERIIISCERAAAIISCERIIISCERAAAIISCERIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	145	cm cm						- R-C			- R			× ×	×				××		5y 4/2 olive gray silty clay, faintly banded 99-110 cm. Bottom contact transitional. 122-146 cm 5y 5/2 olive gray silty clay banded interval, 144-146 cm Laminated black and gray. Bottom contact sharp, more silty, possible turbidite. Two open worm holes at 124 cm. 146-183 cm 5y 4/2 olive gray silty clay, faintly mottled throughout. ss: 115, 145, 180 cm

W8508A Core No. _____GC9 Shoot 1 of 1

			E	Bioge	eno	us	m	at.									Sheet of
cm)	C	onta			-		-		C	ra		_	St	uç	tu	re	X- Present C- Commo
Interval (cm)		Π		namo			Pan	Le l	5	iz	e	_	Pa	3		uat	A-Abundant R-Rare
ervo		sharp	mottled	E J		55	3	S	Ne	sand		<u>+</u>	ard hed	h	2014 Con	homogen	
Inte	Color	sho Pro	Ĕ.	toran calc		diatom	N.	Ĕ	B	Sa	S S	5.		>		2	Remarks
											ł						Styrofoam cap 7 cm wide on top of core liner removed
																	no at base of cap
0 2	10YR - 4/2	┼┼╴	┼╂	++	+	$\left + \right $	+		+	\dagger	\dagger	t	1	\uparrow	7	-	dark greyish brown non- calcareous mottled clay
	5Y 4/2	x													x		olive grey non-calcareous clay
4	5Y 4/1	x				5									х		dark grey mottled clay non-calcareous to 37cm, then becomes calcareous
72 80																	From 72-78 cm very disturbed soup sediment forming gap (sh mp surface?)
																	Fine black lammations (horiz) in slightly lighter colored clay from 123-130
143																	silt band 1/2-1cm wide at 162, 166, 173, 177, 186, 187
220																	Smear slides at: 0, 36, 40, 90, 124, 136

L6-85-NC Core No.

Sheet	 of	
011001	U 1	

	_				E	Bio	pqe	enc	us	5	m	at										Sheet $\1$ of $\1$
	c m	Co	nt	a			-	Τ	Τ	Π			(Gre siz	ir	1	S	irı	lot	ur	-	X- Present C - Commor
	۲al		a		led	F	nanno		E	les	1 fla	shet	-	514			_	bed	p	les	ogen	A - Abundant R - Rare
	Interval (cm)	Color	sharp	grad	mottled	forar	양		diatom	spicu	Silic	lou	grave	sand	silt	clay	lamin	grd	x be	mottles	homogen	Remarks
	0	5YR 3/2		v			x	_	x	-					х					x		Dark reddish-brown,slightly silty,non-calcareous clay; mottled with dark brown (7.54R 3/2) In smear slides, red brown aggregates; forams poorly preserved
	5 -			·A-		R	с		x						x	A						transition zone
	<u>10</u> 10	5Y 4/2				R	С		X		¥				x	A				x		olive-grey, calcareous, very slightly silty clay; irregularly mottled with darker colored clay; fossils poorly preserved
		5 5Y 4/1			x-		x									A					x	Dark grey calcareous plastic homogeneous clay. Slightly darker irregular silt layers 0.5 cm thick at 178.5, 180.5,
	200																					184.0, 186.0, 190.0 cm

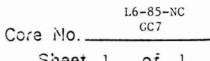
Core No. ______ of _1___

		_				I	Bio	pge	end	ous	5	m	at										Sheet of
		(cm)	Co	n	a			0	Т	T	Г			(Gro				iru				X- Present C- Commor
		עסן				led	E	nanno		ε	les	1 flac	sher	-	siz	e			bed	p	es	uabo	A – Abundant R – Rare
		Interval (cm)	Color	shar	grad	mottled	foran	calc		diatom	spicu	Silic	mol	grave	sand	silt	clay	lamin	grd	x be	mottl	homod	Remarks
Γ		0						х	Τ			R					x						Soupy brown sediment mostly
		1.5							\downarrow														drained out. Red brown aggregates common.
		6.0	7.5YR 3/2			x										x	х						Dark brown non-calcareous silty clay. Red brown aggregates common.
			10YR				x	с	-	A	x	R				x	x				x		Transition zone of mottled
	SEC	8.5	3/2			x																	very dark greyish brown *(5Y4/1) Dark grey silty clay
ľ	I																						Mottled dark grey silty
			5¥4/2				x	с	2	A	x	x				x	x				x		non-calcareous clay with streaks and mottles of darker
																							colored clay. Black streaking common
-		150	-		1	1																	especially at 82-94 cm
-		184		-	-	x					+-						_			-	-	-	
	SEC I		5¥4/1				x	С		R							A					x	Homogenous dark grey slightly calcareous clay with thin (.5-1 cm wide) irregular beds or irregular mottles at 188, 190, 191-194, 199, 205, 213, and a 2cm irregular bed at
		238	5								+	ļ	-	-		ļ		_	<u> </u>		_	ļ	218-220.
																							Smear slides at: 0,4,7,10, 20 30, 40, 150
																							Smear slides at 180, 186, 218.5, 238.0
i		5	1	•	1	1	I.	1 1	Į.		1	8	8	1	1	·		ł	;	:	8	ł	1

Core No. L6-85-NC 3GC

	(1	Bie	og	en	101	ıs		m	at											Sheet of
	Interval (cm)	Co	-		-		nanno				s	100	erl		Gro si:	70	1	<u> </u>	-		-	-	-	X- Present C - Commor
	terva		arp	pp.	mottled	m	calc n	er	rad	atom	licule	Silicy flo	ol sh	gravel	pur	±	clay	min	ed b	bed		orries	homogen	A-Abundant R-Rare
	<u>_</u>	Color	ц.	16	ε	ę	ö	ā	2	σ	Sp	N	ε	b	s	S.	Ū	<u> </u>	b	×		Ē	르	Remarks
	0 17	5¥4/2				x	A		x	с		x				x	A							Highly disturbed olive grey slightly silty non-calcareous clay (possibly double cored)
	17																							contact disturbed
	19.	5¥4/3	x			x	A		x	с	x	x				R	A							Olive non-calcareous slightly silty clay (probably top of core)
SECTION II	19.5	5¥4/2				X	A		R	с	x	x					A						x	Olive grey non-calcareous homogenous slightly silty clay with numerous small black streaks. The sediment grows more calcareous towards the bare silty zones at 116-121cm. Disturbed homogenous dark grey lense (5Y4/1) 120-125cm. (appears to be angular unconformity) *when core was opened the section above 34cm rotated slightly.
	134			-	X	-		-	+	_	_	_		-		-	\square	_	_	-	+	+	_	128-134 mottled contact
1	134 - 150	5Y4/1				x	A			с	х	x				R	A							Dark grey calcareous homogenous very slightly silty clay with numerous black streaks
SECTION	240	5¥4/1				x	A			с	x					R	A							Lighter indistinct bands at 168, 213, 219cm. Prominent black streak at 217.5cm
I NC																								Smear slides at: 0, 10, 50, 90, 143, 236

Core No. 16-85-NC GC5


						Ε	Bio	a	en	οι	ıs	7	n	at.										Sheet $\1$ of $\$
		Interval (cm)	Co	n	tac	t ſ	Т	<u></u>	Т	T	Т				0	Gro					uci			X - Present C - Common
						mottled		nanno			E	es	fieid	her		siz	ze			bed	5	es	den	A - Abundant R - Rare
		terv		sharp	20	E	ED.	2	5		ator	ICU	1/1CA	ols	avp	pur	+	λρ	шi	p p	be	otto	omo	
1			Color	1s	6	ε	2	S	ā	민	ō	S	S	Ε	gr	S	si	U	9	.6	×	E	Ĕ	Remarks
		0 3	5¥3/2		x		R	x		x	с	x	x				с	A					x	Soupy dark reddish brown non-calcareous silty clay. Red brown aggregates common.
		3 6_	5¥4/2		x			x		x	с	x	x				x	A				x		Olive grey non-calcareous silty clay transition zone
		11	5¥4/2	x													с	A						Olive grey disturbed, wet silty clay non-calcareous
		11 16	5¥4/2														x	A						Broken contact at ll & 16–17 Very disturbed olive grey non-calcareous clayey silt
		17	5Y4/1.	5				x		x	с	x	x				x	A						Dark grey non-calcareous slightly silty clay with prominent rust colored lcm band at 21-22 cm (horizontal
		26		-x				_	_	_		_		-	_			_	_	-	_	-		banding) Contact at 26-28 cm is
		28			x			x														×		irregular angular unconformit with lcm rust color band overlying a minor color transition from 29-32 cm (10 yr 2/2 very dark brown to 5Y4/1 dark grey)
	_	32	5¥4/1.	5			x	С	x	x	С	x	x				R	A						Dark grey clay, slightly silty toward the top,growing clayey toward the base. Non-calcareous to ∿ 100cm becoming slightly calcareous at base. Prominent very dark brown band at 43-44 cm.
		172 175	5Y4/1				с	A										A	1-		-			172-175 mottled transition with a silt layer at 175 cm
		230	5Y4/1				x	x										A						Homogenous dark grey slightly calcareous to calcareous clay with silty bands at 181, 184cr Smear slides at: 0, 4.5, 21, 24, 28.5, 37, 43,50,120,145c Smear slides at: 168,130,229

54

L6-85-NC Core No. <u>CC6</u> Sheet <u>1</u> of <u>1</u>

																						0010 110.
					1	D: /	-	<u></u>	~		~	-+										Sheet $\{1}^{1}$ of $\{1}^{1}$
	(L					_	-		ous	> 	111	ui.		•			c	ir		s		
	<u>د</u>	Co	n	10	ct		ouupu									ו						X- Present C- Commor
	=				σ		UDI			S	Factor 1	let		siz	(e			D		U	, l =	A-Abundant R-Rare
	ž		19	-	tle	Ε				E	15	S	/e	Ъ			Ē	ق	ed	4		A-Abundani K-Rare
	Interval (cm)	Color	Pq	ē	mottled	5	B	e	rad diatom	la	115	100	ē	dD	ŧ	Ð	E	P	م		homogen	Pomarka
	<u> </u>	Color	S	6	2	-	0		20	S			5	S	s	0	=	5	Ě		1-	Remarks
	0																					Drained
	2																					
	2	5Y																				Olive grey mottled calcareous
	25	4/2				с	c		xc	x					x	A				x	x	silty clay with forams
	5					Ů	Ť	+	-	1	-	-		-	-	-		-	-	F	-	
	1	5Y				С	A		R	x						A						Mottled dark grey calcareous
		4/1																				silty clay. Angular lcm
																						wide rusty colored bands at
	36	5			v																	25 cm & 27-29 cm
1		5 5Y	-	-		С	A		-	\vdash	1					A			-	1	1	Dark grey mottles in homo-
	1.00	4.5/1																				genous grey and calcareous
																						slightly silty clay.
																						Irregular slightly darker
																						zone of heavy mottling from 62-84cm. Less silt
																	1.0					than above. Occasional dark
	150																					streaks, especially at 110-
																						116 cm.
																						Lighter homogenous mottle
																						at 131-134 cm.
																						Calcareous throughout.
								+	_	+							_			-	+-	
	257																					
																						Smear slides at: 5, 19, 52,
																						64, 120, 255
1																						
1																						
			-																			
										1												
1		1																				
															1							
	1				ĺ																	
		1																				
]
1																						
																İ						
1	ļ		ł		I	1			1	1	1	:	,			1	1	'	;	Ľ		1

•••

					8	Bio	ba	er	101	JS	ſ	n	at.										Sheet _1 of _1
	(m	Co	וחו	a		-	-			-	Τ		٦	(Gro					uct			X- Present C- Common
	Interval (cm)		-	-	_	• 1	nanno			_	s	100	Fer		siz	ze			p		s	en	A-Abundant R-Rare
	irva		d	P	tile	E	5	-		tor	B	100	1s	vel	p		X	. <u></u>	p	bed	ttle	noc	
	Inte	Color	sha	gra	ош	for	cal	pte	rad	dia	spi	51/	Ê	gra	Sar	sill	cla	lan	gro	×	ů	homogen	Remarks
	0					\square																	Soupy, very dark greyish
	2	10YR 3/2		x												x	с					x	brown non-calcareous silty
-	2				-		-		-			-	-	-	-	-	-	-	-		-	\square	clay. Some drained off.
		5Y														x							Faintly mottled olive grey non-calcareous silty clay
	8.5	5/2 -10		x												A	C				X		grading into silty sand
-	8.5									_	_	_			-				-	-	-		at base
SEC	10																						angular gradational contact
C II	10	5Y	+-	\vdash						-					-				\square		\square		Dark olive grey sand and silt
н		3/2													с	с	x		x				sand slightly calcareous.
																							Numerous black sand fragments (turbidite)
			-	\vdash	\vdash	┝		-	-	-	\vdash	-	-	\vdash	-	-	-	┢─	-	-	\vdash	+-	Angular disturbed contact
	12		x	1_										_	_								Angular disturbed contact
																c	v						Dark grey calcareous clayey
	17	NY													^x	C	A						silt + sand
		3.5/1																					Slightly darker than below
	20		-x	1	x	-	-			-		_	_		<u> </u>	ļ				-			
	20	5Y																					
		4/1														x	c				x		Mottled dark grey calcareous
																							silty clay. Worm holes and black streaks
																		1.					common. 0.3-1cm darker silty
	150				1													x					beds at 24, 37, 53, 71, 104, 115, 133, 135 cm.
	150																	Â					Grey (5Y5/1) calc mottled clay
	188																						sections at 94-104, 110-134 cr. Num. black streaks at 166-174.
	;		-	-	+x	1-	+-	-	-	+		-	-	1-	-				-	-	+	+	
SEC	188	5Y4/1				1								1		X	C						Mottled dark grey silty clay. Very subtle darker color than
н																							above. More clayey and less
																							calcareous with depth. Prominent H mottle 198-206.
					Ì																		Several narrow bands black streaks at 215-221 cm.
	232		x	+	-		-	-	-	_	-	-	-	+	+-	-	-	-	-		+		Diack streaks at 213-221 Cm.
		5Y4/1																1					Faintly mottled calcareous
																							clay, slightly lighter than above.
	240				_			-		-	-	-		-	1	1		1	1		-	-	
																		ł			1	1	BEDS TILTED 8° TO RT.

CORE LOS

L6-85-NC Core No. _____

Sheet 1 of 1

						Ε	Bio	gei	no	us		ma	at.										Sheet $_1$ of $_1$
		cm)	Co	ก่	a		-		Γ	Γ			٦	0	Sro		· •	S	iru	ict		_	X- Present C - Common
		ol (ed		nanno		E	es	flag	het		siz	ze			bed	-	es	den	A-Abundant R-Rare
		Interval (cm)	Color	sharp	grad	mottl	foram	calc nar	rad	diatom	spicul	Silico	mols	grave	sand	silt	clay	larnin	grd bed	x bed	mottl	homogen	Remarks
		0 4	7.5YR 3/2				R	x	Γ	x						x							Dark brown non-calcareous silty clay section collapsed so spacer put in
		4	10YR 3/3 to 5Y4/1		x		R	x	x	x	x	x				x	x			-			Transition zone of very dark greyish brown (10YR 3/3) to dark grey silty non- calcareous clay
	SEC II	6 31	5Y 4/1.5		X		R		x	x	x					x	х				x		Faintly mottled dark grey silty non-calcareous clay with streaks and mottles of darker colored clay. Prominent very dark grey irregular band 2 cm wide at 20-22 cm (5Y3/1)
	-	31	5¥3/1	x	X			Eew	£ο	ss:	11:	8				x	x	х			X		Gradational contact to very dark grey non-calcareous silty clay which is siltier than above. Numerous bands, mottles and horizontal parallel lamination throughout, but especially from 67-74. At 69-70 prominent very dark silty band 1 1/2 cm wide. Sulfides?
			5Y4/1		-	1	R	x	2	(A	X	x	-	Ī	1	X	x		1	T	X		Same unit as 6-31 cm above
_		150																					
		177 196	1			x									-		_				Х		Mottled transition zone contact
	SEC I		5Y4/1				R	x	f	ew	f	os	si	L S			x					X	Homogenous dark grey plastic slightly calcareous to calcareous clay. Occasional mottles and dark streaks. Smear slides at: 7, 22, 29, 32, 47, 60, 69, 77, 140, 174, 194, 233
							Į														ļ		

	~								ou													Sheet $\1$ of $\1$
	Interval (cm)	Co	n	la	ct	Π	ouu	Τ	T	Τ		F) (Gro	air ze	ו	S	irı	ici	ur	e	X- Present C- Common
	rval		a		tled	ε	DU		8	ules	ofter	she	/el	5			E	bed	ed	tles	homogen	A-Abundant R-Rare
_	Inte	Co Color	shai	gra	mot	fora	calo	pre		Spic	112	om m	grav	san	silt	clay	lami	grd	q X	mot	hor	Remarks
	0	2.5Y													x						x	Dark greyish brown calcareous silty clay
	3	4/2																				grades into
		2.5Y 5/2		x											x	х				x		mottled greyish brown calcareous silty clay
.	11		-	-	-	-		╉	+	╀	╀	\vdash	┝	┝		-	-			-	-	
C II	11	5Y 4/1													x	x				х		Mottled dark grey calcareous silty clay. Less silty with depth. Worm holes and black streaking common. Below
SEC	-150																					100-120 cm, becomes less calcareous. Black streaks common.
			 																			150-165 only very slightly calcareous
	165- 168				x				_													angular unconformity
		5Y 5/1														x				x		grey very calcareous mottled clay
	177 187		X		x											х						steep mottled angular unconformity
		5Y 4/1														x				x		mottled slightly calcareous dark grey slightly silty clay black streaks
C I	211																					
SEC																						

L6-85-NC Core No. ______

						-			_				- 1										Sheet <u>1</u> of <u>1</u>
		Ê	0				_	oge		us T		no	л. —		20	iin	I	S	tri	ıct	ur	a	
		<u>c</u>	Co	~	_	_)	nanno				ş	=										X- Present C - Commo
		Val		a		led	ε	P		E	ules	110	ŝ	5				Ē	bec	ed	tles	60	A-Abundant R-Rare
		Interval (cm)	Color	shar	grad	mot	fora	calc nann pter	Lod	diat	spici	Silis	om	grav	sanc	silt	clay	lami	grd	x bed	mot	hom	Remarks
		0		İ					T				T										Soupy brown sediment
		1																					Mostly drained out
		1 3	7.5YR 3/2			x										x	x				x		Dark brown non-calcareous silty clay
	11	3 7	10YR 3/2		x																		Transition zone of mottled very dark grey brown + dark grey brown + 5Y 4/1 dark grey silty non-calcareous clay
	SEC	7	5Y 4/1		X											x	x				x		Mottled dark grey non-cal- careous silty clay with streaks and mottles of darker colored siltier clay, 1 cm band at 80 cm
		164		-	-	x	-		_		+-							-		-		-	Mottled contact from 164-170
		170			+		-	┼╌┼	_				-	L		+-		-		+-			
	I	249	5Y 4/1											and derived and according to some the second in the same particular some so			x	والمراجع متكر الكريكي كالمراجع للألم ألج المراجع المراجع والمراجع المراجع والمراجع وال				x	Homogenous dark grey slightly calcareous to calcareous plastic clay Occasional faint dark mottles prominent 1-2cm irregular Slightly darker bands at 90-92, 87-90
	SEC																						Smear slides at: 0, 6, 10, 50, 80 (band), 150
																							Smear slides at: 160, 167, 191, 210, 240 cm
-5U 2276																							л. у В.

Core No. GC12

	~				{	Bio	og	er	101	us		m	at.										Sheet $_1$ of $_1$
	(cm	Co	-	-	_		nanho					0	_		Gro Siz				iru		_		X- Present C - Commo
	lov		٩		hed	E	nar			E	les	2 8/2	she	e.		-		_	bed	pa	les	oger	A – Abundant R – Rare
	Interval (cm)	Color	sharp	grad	mottled	fora	calc	pter	rad	diate	spice	Silica flag	om	grav	sano	silt	clay	lamir	grd bed	хb	mott	hom	Remarks
	0																						(0-1 cm soup)
	1 3	10YR 3/2				х	Х		х	С	х	R				С	A					Х	Very dark greyish brown silty clay non-calcareous Red brown aggregates common
	3			X			-		-	-			-		-	-		-		_			
	4	10YR 3/3		x			X fe	w	fo	X SS		6											Gradational contact to dark brown 10YR 3/3
	4	5Y 4/1														с	A				x		Gradational contact to dark grey silty non-calcareou clay.
	5			X	-	-																	
	38	5Y4/1				х	x		х	С	х	х				с	A				x		Dark grey silty non-calcareou clay with black basalt silt fragments. Darker blackish streak and mottles irregular present (esp. 26-38).
	38			X	**								-		_								
SECTION I	53	5Y3/1					X	f	Х 05	X						с	A	x			x		Very dark grey irregular band. of silty non-calcareous clay with dark grey silty non- calcareous clay (Sulfides?) At 52-54 cm very dark grey grades to dark grey.
	53	5¥4/1		X		х	x		x	x						с	A	all sector is a submit the state of the sector is			x		Dark grey silty non-calcareous clay. Prominent very dark grey irregular bands 1-2 cm wide at 94.5-96, 103-110, 112,
	118																						116-118. Bands contain black silty fragments.
	118		x			-	X v	er		X Fe		fo	ss	1:	5								Sharp irregular 40° angular unconformity (118—126 cm)
	126 126			-	-	-	┝	┝	-		-				-			-	-	-	┢		Some veining through contact
	154	5¥4/1					v x	er		fe		Eos	s	.1:		R	л	بالإخارية والمطالبات ومعدود الاستقالية والارد				x	Dark grey plastic slightly calcareous clay (Smear slides at: 0, 3, and from 10-150 cm at 10 cm intervals.) Smear slides at: 10 cm inter- vals.
				İ		Ì			I		ļ							ł	1				

APPENDIX IX. 3.

WATER CONTENTS FROM CHEMISTRY SAMPLES

CORE	ACC NO.	DEPTH % W	ATER	CORE	ACC NO.	DEPTH %	WATER
<u>ନ</u> ନୁନ୍ନ ନୁନ୍ନ ନୁ ୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.୭.		$\begin{array}{c} 5\\ 14\\ 19\\ 24\\ 29\\ 35\\ 39\\ 44\\ 49\\ 53\\ 58\\ 63\\ 69\\ 74\\ 79\\ 84\\ 89\\ 94\\ 99\\ 104\\ 109\\ 114\\ 119\\ 124\\ 129\\ 134\\ 139\\ 144\\ 148\\ 154\\ 159\\ 164\\ 169\\ 175\\ 180\\ 185\\ 190\\ 195\\ 200\\ 205\\ 210\\ 215\\ 220\\ 225\\ 230\\ 235\\ 240\\ 245\\ 253\end{array}$	60.2 57.0 55.4 53.1 55.5 53.1 55.5	S S S S S S S S S S S S S S S S S S S	25710 25711 25712 25713 25714 25715 25716 25717 25718 25720 25720 25721 25722 25723 25724 25725 25726 25727 25728 25726 25727 25738 25730 25731 25732 25733 25734 25735 25736 25737 25738 25736 25737 25738 25736 25741 25742 25742 25742 25744 25745 25746 25747 25748 25746 25747 25748 25746 25747 25748 25740 25741 25745 25746 25747	$\begin{array}{c} 72 \\ 77 \\ 82 \\ 87 \\ 92 \\ 97 \\ 102 \\ 107 \\ 112 \\ 117 \\ 122 \\ 127 \\ 132 \\ 137 \\ 142 \\ 149 \\ 153 \\ 156 \\ 161 \\ 166 \\ 171 \\ 176 \\ 180 \\ 185 \\ 190 \\ 195 \\ 200 \\ 205 \\ 210 \\ 215 \\ 220 \end{array}$	64.6 61.2 58.8 48.3 57.9 58.9 47.6 46.6 46.3 42.2 45.9 40.3 39.4 39.5 50.3 61.3 59.8 63.7 61.3 58.6 59.0 58.5 57.1 58.6 59.0 58.5 57.5 58.5 57.5 58.5 57.5 51.2 51.3 52.2 51.3 52.2 51.5 52.2 51.5 52.5 53.5 52.5 53.5 52.5 53.5 52.5 53.5

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CORE	ACC NO.	DEPTH	% WATER	CORE	ACC NO.	DEPTH	% WATER
GC 102580423246.7GC 102580523745.5GC 102580624047.3GC 102580724645.2	ਸ਼	25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25916 25917 25918 25919 25920 25921 25920 25921 25922 25923 25924 25925 25926 25927 25928 25926 25927 25928 25926 25927 25928 25929 25930 25931 25931 25932 25933 25934 25933 25934	3 9 13 19 23 29 33 49 49 58 66 76 86 91 108 112 127 133 140 143 147 156 166 176 186 192 202 212 206 212	60.3 59.3 58.3 57.4 59.2 57.6 59.5 57.6 59.7 59.6 57.6 59.7 59.6 60.2 57.6 59.7 59.7 59.8 57.6 60.2 57.6 58.6 57.5 56.14 58.6 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.5 58.6 57.3 58.6 57.3 58.6 57.3 58.6 57.3 58.6 57.3 58.6 57.3 58.6 57.3 57.5 57.3 58.6 57.3 57.5 57.	$ \begin{array}{c} \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G}\mathbb{G} \ 10 \\ \mathbb{G} \ G$	25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25770 25771 25772 25773 25774 25775 25776 25777 25778 25776 25777 25780 25781 25782 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25796 25797 25798 25796 25797 25798 25799 25790 25791 25795 25796 25797 25798 25799 25800 25801 25802 25803	$\begin{smallmatrix} 2 \\ 7 \\ 12 \\ 16 \\ 21 \\ 26 \\ 31 \\ 36 \\ 41 \\ 46 \\ 55 \\ 66 \\ 70 \\ 75 \\ 86 \\ 91 \\ 101 \\ 112 \\ 126 \\ 135 \\ 142 \\ 147 \\ 153 \\ 161 \\ 171 \\ 186 \\ 197 \\ 205 \\ 217 \\ 225 \\ 237 \\ 240 \\ 101 \\ 10$	57.0 63.9 63.7 61.5 67.4 66.3 66.0 64.0 64.0 62.9 56.12 9.6 60.2 55.59.29 61.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5 56.38.0 60.8 55.12 96.4 12.9 56.5 56.38.0 56.38.7 56.88.9 46.8 45.5 45.5 45.5 45.5 45.5 45.7

CORE	ACC NO.	DEPTH	% WATER	CORE	ACC NO.	DEPTH	% WATER			
CORE GC 12 GC ACC NO. 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25707 25708	DEPTH 0 5 9 13 18 24 30 34 39 44 49 54 59 64 69 74 80 86 91 96 101 106 111 116 121 123 131 136 147 151	<pre>% WATER 58.8 61.3 76.7 65.2 62.2 63.1 68.3 59.1 31.3 51.2 58.6 59.8 75.2 60.2 59.3 58.3 58.7 49.8 59.8 56.9 54.3 53.8 50.8 47.9 47.0 46.3 46.0 45.3 45.8</pre>	CORE W 6 W 6 W 6 W 6 W 6 W 6 W 6 W 6 W 6 W 6	ACC NO. 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25956 25957 25958 25959 25960 25961 25962	DEPTH 2 6.5 10 16 20 26 30 36 40 46 50 56 60 66 70 76 80 86 90 96 100	<pre>% WATER</pre>				
GC 12	25706	142	45.2							

Water contents calculated from weights of chemistry vials, according to:

% water = (wet weight - dry weight) / wet weight

Escanaba Trough - Cruise L6-85-NC

Water contents are not corrected for salt concentrations.

Northern Gorda - Cruise W8508AA

APPENDIX IX. 4.

GORDA RIDGE PALEOMAGNETISM NRM DIRECTIONS AND INTENSITIES NRM Intensity in 10^{-5} emu/gm wet

CORE	DEPTH	SAMP	DECL	INCL	NRM	CORE	DEPTH	SAMP	DECL	INCL	NRM
1 1	2 2	1 2	-77.4 221.2	75.0 28.1	0.479 0.686	2 2	2 2	1 2	18.3 10.4	76.7 69.2	1.900 2.200
ī	10	1	177.9	57.6	1.448	2	6.2	ī	6.0	64.4	1.734
1	10	2	-0.6	76.4	1.388	2	6.2	2	14.8	59.1	1.836
1	18	1	161.1	64.6	2.306	2	11	1	17.3	59.2	2.774
1	18	2	166.1	62.1	2.267	2	11	2	24.3	58.6	3.036
1	29.2	1	175.4	55.1	2.605	2 2	20.5	1	13.1	60.2	2.536
1	29.2	2	171.6	53.5	2.653	2	20.5	2	14.5	60.1	2.621
1	37.2	1	161.6	59.5	2.917	2	30.7	1	17.5	54.6	2.162
1 1	37.2 47.5	2 1	165.9 176.1	57.1 56.1	2.982 2.955	2	30.7 41	2	20.5 5.9	58.3 55.5	2.077 3.201
1	47.5	2	177.3	52.7	2.955	2 2	41	1 2	11.9	55.5 55.7	3.201
1	58	1	167.3	52.3	2.934	2		1	17.1	49.8	2.709
ī	58	2	165.6	53.1	2.904	2	50.5	2	17.3	49.2	2.810
1	66.6	1	161.6	62.0	5.044	2		ī	7.4	52.8	3.440
1	66.6	2	159.2	62.9	4.973	2 2	60	2	10.0	52.5	2.991
1	76.8	1	161.0	55.4	3.320	2	70.2	1	2.5	56.2	5.507
1	76.8	2	162.3	56.5	3.401	2	70.2	2	2.5	56.0	5.553
1	88.3	1	162.1	59.3	3.213	2	79.7	1	2.1	52.0	3.799
1	88.3	2	155.8	59.0	1.580	2		2	5.2	56.0	3.895
1	97.8	1	169.1	63.7	3.151	2	90	1	-1.5	54.8	3.187
1 1	97.8 107	2 1	163.8 169.9	62.2 58.4	2.887 2.910	2 2	90 99.9	2	2.0	54.0	3.295
1	107	2	170.0	60.8	3.026	2	99.9	1 2	2.9 8.1	60.7 61.6	3.094 3.012
î	117.5	1	165.7	58.2	3.020		111.1	1	13.8	58.4	2.693
1	117.5	2	171.2	59.9	2.857		111.1	2	15.3	56.3	2.780
1	127	1	167.6	66.1	3.200		120.6	1	1.7	54.6	3.320
1	127	2	169.7	65.0	3.192		120.6	2	7.6	54.5	3.176
1	137.8	1	177.7	52.5	2.296	2		1	2.9	53.9	3.452
1	137.8	2	179.5	47.4	2.720	2	130	2	-1.0	60.3	3.194
1	146.5	1	156.4	57.7	2.695	2	139.6	1	7.8	50.7	3.179
1	146.5	2	169.9	49.1	2.627	2	139.6	2	10.8	49.3	3.112
1 1	153.5	1 2	168.1 161.0	50.8 58.0	3.001 2.944	2 2	147 147	1 2	10.5 10.1	41.8	2.935
1	162	1	163.7	59.1	3.867	2	153	1	180.0	46.2 49.2	2.744 4.090
1	162	2	161.8	61.5	3.834	2 2	153	2	176.1	52.0	3.840
1	172.5	1	161.8	53.8	3.001	2	163	ī	186.8	60.9	3.860
1	172.5	2	169.6	52.5	2.756	2	163	2	176.2	56.0	3.801
1	182.5	1	160.2	46.4	6.173	2	171.8	1	174.7	58.7	3.764
1	182.5	2	163.1	44.7	6.042		171.8	2	170.2	59.4	3.930
1	193	1	163.9	38.1	5.377		181.8	1	181.0	51.9	4.315
1	193	2	163.4	34.9	5.433		181.8	2	177.8	48.7	4.270
							192.5	1	172.5	50.2	5.981
						2	192.5	2	173.0	46.8	5.197

	CANO	DECI	TNOT	NDM	2 2 2 2 2 2 2 2 2	202.6 202.6 212 223.3 223.3 232.5 232.5	1 2 1 2 1 2 1 2	175.7 172.1 164.8 167.3 169.0 176.7 145.2 164.2	48.8 44.1 51.0 45.0 50.5 48.7 57.0 54.5	5.650 5.553 6.307 5.597 7.084 6.837 4.660 4.907
CORE DEPTH	SAMP	DECL	INCL	NRM	CORE	DEPTH	SAMP	DECL	INCL	NRM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	234.3 -73.0 -88.9 -37.0 28.8 29.0 55.2 39.0 -9.3 -23.8 -26.7 -17.6 -16.6 -20.3 -18.4 -29.7 -23.8 -26.7 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.4 -29.7 -23.3 -18.8 -27.8 -32.0 -24.1 -28.2 -41.6 -33.8 -26.3 -36.8 -27.8 -31.7 -26.3 -31.6 160.0 161.5 174.8 176.0 171.2 168.1	54.1 58.6 44.09 65.14 67.18 72.55 89.55 72.55 59.52 59.55 59.52 59.55	2.038 2.355 2.159 1.652 2.580 3.064 2.001 2.422 0.917 1.885 2.239 2.778 2.777 1.817 1.763 2.572 2.566 3.920 3.978 3.252 3.018 3.252 3.744 3.252 3.744 3.252 3.744 3.2694 2.997 2.997 2.997 2.997 2.997 2.924 2.924 2.924 2.924 2.924 2.924 2.924 2.924 3.731 3.518 3.791 3.568 3.569 3.306 5.677 6.383	6 6 6 6 6 6 6 6 6 6	124.2 134 134 144 153.8 153.8 164.1 164.1 174.8 174.8 185	12	220.5 227.3 203.6 206.5 198.3 203.3 191.3 236.7 205.0 219.4 212.0 214.6 190.9 196.5 202.1 204.3 200.9 203.5 190.3 192.5 202.4 200.8 177.0 167.0 188.6 189.1 178.4 179.7 178.8 177.9 171.2 182.7 168.7 167.6 176.8 171.1 174.7 173.0 171.4 172.6 174.6	$\begin{array}{c} 46.5\\ 56.8\\ 57.2\\ 60.9\\ 82.1\\ 32.9\\ 12.8\\ 65.2\\ 91.2\\ 82.1\\ 32.9\\ 12.8\\ 65.2\\ 91.2\\ 82.1\\ 32.9\\ 12.8\\ 65.2\\ 91.2\\ 82.1\\ 32.9\\ 12.6\\$	1.679 1.079 2.315 2.311 2.541 2.427 1.833 1.729 2.465 2.216 2.558 2.374 4.314 4.102 3.497 3.663 3.160 3.011 3.131 3.22 2.936 2.907 2.418 2.583 1.997 1.830 1.812 1.321 1.394 1.212 1.394 1.212 1.394 1.212 1.394 1.212 1.394 1.212 1.394 1.257 1.607 1.507 1.507 1.507 1.521 1.384 1.408 1.540

6 205	2	172.1	52.8	1.431
6 214.7	1	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45.0	1.393
6 214.7	2	162.3	41.1	1.344
6 225.2	1	191.8	64.7	1.597
6 225.2	2	178.8	68.5	1.705
6 234.5	1	145.5	56.0	1.710
6 234.5	2	153.7	50.6	1.916

5	110.0	-		1000 C 1000 C 1000 C	0.000		2.1.1.1	-	100.0	10.0	
5	185.5		171.6		6.444		214.7		162.3		1.344
5	185.5		173.4		6.639		225.2		191.8		1.597
5	196		180.5		6.629	6	225.2		178.8		1.705
5	196	2	185.0	44.5	6.178		234.5		145.5		1.710
5	206.1	1	181.2	42.4	6.168	6	234.5		153.7	50.6	1.916
5	206.1	2	181.1	37.7	6.108	6	244.6	1	184.9	48.0	1.957
5	215.2	1	159.0	56.6	5.567	6	244.6	2	172.3	50.8	1.583
5	215.2	2	160.7	57.2	5.947	6	252.7	1	170.2	43.2	1.819
5	225.7	1	170.6	50.5	6.747	6	252.7	2	176.5	41.6	1.470
5	225.7	2	167.6	46.3	6.964						
CORE	DEPTH	SAMP	DECL	INCL	NRM	CORE	DEPTH	SAMP	DECL	INCL	NRM
7	4.5	1	31.5	48.3	8.856	8			86.8	69.5	1.997
7	4.5	2	30.1	47.8	9.237		6		120.1	66.7	1.987
7	10.7	1	51.2	44.4	6.297		15.2	1	100.7	63.3	3.481
7	10.7	2	43.7	35.3	6.808	8	15.2	2	85.9	64.0	3.478
7	15	1	1.1	35.1	3.633	8	22.2	1	105.2	63.3	8.106
7	15	2	1.7	34.0	3.736	8	22.2	2	120.0	59.0	3.472
7	20.4	1	0.3	63.8	5.420	8			108.1	68.4	6.944
7	20.4	2	4.4	65.2	5.380	8	32.3	2	104.9	67.7	11.850
7	30.3	1	6.5	53.9	4.547		37.1		100.6	51.1	9.545
7	30.3	2	11.0	58.3	4.980	8	37.1	2	109.2	48.0	12.228
7	40		13.6	58.9	6.070	8	41.7		107.0	55.7	13.360
7	40.4	1	13.6	62.5	6.151		41.7		111.3	56.8	14.253
7	50		-4.8		4.540				102.8		14.026
7	50		-8.9		4.251		46.2				13.009
7	60.1	1	-9.5		4.339		51.5		88.9		17.390

CORE	DEFIN	SHIL	DECE	TINCT	ININ'I	CONE		SHIT			ININ'I
7	4.5	1	31.5	48.3	8.856	8	6	1	86.8	69.5	1.997
7	4.5	2	30.1	47.8	9.237	8	6	2	120.1	66.7	1.987
7	10.7	1	51.2	44.4	6.297	8	15.2	1	100.7	63.3	3.481
7	10.7	2	43.7	35.3	6.808	8		2	85.9	64.0	3.478
7	15	1	1.1	35.1	3.633	8	22.2	1	105.2	63.3	8.106
7	15	2	1.7	34.0	3.736	8		2	120.0	59.0	3.472
7	20.4	1	0.3	63.8	5.420	8	32.3	1	108.1	68.4	6.944
7	20.4	2	4.4	65.2	5.380	8	32.3	2	104.9	67.7	11.850
7	30.3	1	6.5	53.9	4.547	8	37.1	1	100.6	51.1	9.545
7	30.3	2	11.0	58.3	4.980	8		2	109.2		12.228
7	40	2	13.6	58.9	6.070	8	41.7	1	107.0	55.7	13.360
7	40.4	1	13.6	62.5	6.151	8		2	111.3	56.8	14.253
7	50	1	-4.8	61.5	4.540	8	46.2	1	102.8	49.5	14.026
7	50	2	-8.9	61.2	4.251	8		2	117.6	53.9	13.009
7	60.1	1	-9.5	63.3	4.339	8	51.5	1	88.9		17.390
7	60.1	2	-4.9	60.2	5.023	8	51.5	2	94.1	61.3	15.998
7	70	1	-4.1	67.7	6.131	8	57	1	93.1	57.7	25.129
7	70.1	2	-0.4	67.7	6.134	8	57	2	99.8	59.2	25.308
7	79.7	1	0.0		-8.826	8		1	86.2		16.573
7	79.7	2	-1.7		-9.033	8		2	92.1		16.185
7	89.8	1	7.7		-9.660	8	66.5	1	105.0	37.9	26.681
7	89.8	2	3.0	68.4	5.543	8		2	100.5	40.9	24.928
7	100.4	1	-5.8	69.5	4.099	8		1	104.7	48.4	36.689
7	100.4	2	-4.1	70.3	4.045	8	71.7	2	98.5	50.5	34.653
7	110	1	5.3	65.1	3.458	8		1	94.4	64.0	3.731
7	110	2	8.7	62.7	3.237	8			90.0	63.5	4.130
7	119.9	1	6.0	57.3	4.025	8		1	91.3	58.2	3.322
7	119.9	2	5.1	53.1	4.197	8		2	92.4	59.4	3.427
7	130.2	1	5.0	52.6	2.062	8		1	99.9	65.5	4.269
7	130.2	2	4.7	49.4	1.794	8		2	99.2	65.7	4.727
7	139.7	1	15.7	40.7	1.336		106.2	1	93.5	63.7	3.161
7	139.7	2	12.1	38.8	1.504	8	106.2	2	94.0	66.7	3.370
7	153	1	2.5	65.7	1.992	8	117	1	99.1	65.6	2.806
7	153	2	-3.8	61.6	2.024	8	117	2	96.4	65.7	2.864
7	162.3	1	6.0	64.5	1.314	8		1	96.8	68.5	2.893
7	162.3	2	4.5	64.9	1.360	8		2	90.0	68.7	3.290
7	172.6	1	0.1	64.4	1.686		136.1	1	84.5	68.8	3.046
7	172.6	2	-3.5	63.2	1.736		136.1	2	95.9	71.0	3.138
7	182.6	1	-10.0	65.2	2.020		145.7	1	80.5	63.9	2.556

44.9 8.297

48.6 8.600

5 176.6

5 176.6

1 176.0

2 178.8

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49.0 1.319 8 56.2 1.445 0 46.0 1.566 1 44.8 1.949 3 50.2 4.891 4 51.5 4.491 5 57.4 5.680 8 58.6 5.973 3 65.7 6.266	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2 62.3 2.860 1.1 61.8 3.324 4.7 64.0 3.398 7.4 66.4 4.056 5.1 64.0 3.835 66.1 69.7 3.385 91.7 67.2 3.557 8.5 59.0 4.310 96.0 59.7 4.843 3.3 58.0 4.546 66.0 56.5 5.112 25.6 64.8 7.249 7.4 68.5 6.872 0.3 43.8 5.905 6.9 44.4 5.921 59.4 39.7 4.663 53.2 41.5 4.821 67.4 43.8 8.510 64.7 56.5 9.390
CORE DEPTH SAMP DECI	INCL NRM	CORE DEPTH SAMP DE	CL INCL NRM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.6 73.2 8.126 9.0 75.6 6.213 9.1 72.2 0.941 6.0 40.8 1.570 5.7 69.0 3.154 1.9 71.3 2.757 81.4 70.6 2.487 28.7 70.9 2.722 8.5 64.4 2.460 8.9 62.3 2.904 29.4 64.4 3.630 26.0 64.0 3.781 8.2 56.1 2.655 5.1 56.6 2.563 29.8 60.2 3.440 26.2 57.0 2.914 21.6 62.3 5.178 29.8 60.2 3.781 41.0 71.8 3.506 23.4 62.7 2.542 28.8 61.3 2.825 20.7 67.4 3.027 29.6 66.5 3.093 22.3 68.7 2.654 49.0 66.5 2.896 25.1 65.8 2.804 46.3 61.6 2.751 55.6 55.8 2.526 32.4 66.1 2.847 40.6 68.6 2.960

67

1 -56.6

2 -58.1

10 209.1

10 216.5 10 216.5

10 224.5

10 224.5

10 231.8

10 231.8 10 239.2 10 239.2

4.691 4.055

3.783

4.228

4.740

5.243 5.352

56.6

52.7 53.5

45.6

48.9

56.0

55.0

56.6 4.492

55.2 4.409

9	147.2	1	180.1	60.6	1.489		134.8	1	-38.5	61.4	2.840
9	147.2	2	257.2	58.5	1.061	10	134.8	2	-34.6	63.0	3.260
9	154	1	183.8	60.2	2.147	10	142	1	-33.9	62.0	2.876
9	154	2	182.4	55.6	2.545	10	142	2	-35.4	61.9	2.900
9	163.9	1	137.5	75.8	1.614	10	153	1	-43.9	31.2	3.900
9	163.9	2	148.5	63.3	1.960	10	153	2	-33.0	63.0	2.496
9	169.5	1	185.8	54.6	1.907	10	161	1	-46.2	58.8	4.900
9	169.5	2	191.0	47.8	1.845	10	161	2	-51.5	58.5	4.900
9	179.4	1	184.0	66.1	1.451	10	170.3	1	-52.9	41.5	6.128
9	179.4	2	180.2	63.9	1.453	10	170.3	2	-49.8	39.5	6.080
9	188.4	1	186.7	76.8	1.894	10	180.3	1	-48.3	56.9	6.539
9	188.4	2	196.9	78.3	1.640	10	180.3	2	-62.1	60.5	6.245
9	197.4	1	148.5	59.4	2.201	10	186	1	-67.2	52.1	6.330
9	197.4	2	161.6	52.0	2.670	10	186	2	-65.4	55.9	6.372
9	204.2	1	145.3	66.1	2.167	10	192.2	1	-78.6	35.2	6.969
9	204.2	2	164.8	71.5	2.063	10	192.2	2	-88.3	40.3	6.654
						10	200	1	-37.6	45.1	5.869
						10	200	2	-38.9	45.9	5.733
						10	209.1	1	-51.7	57.4	4.365

Escanaba Trough Cores - L6-85-NC Northern Gorda Cores - W8508AA												
CORE	DEPTH	SAMP	DECL	INCL	NRM	CORE	ΞΙ	DEPTH	SAMP	DECL	INCL	NRM
12 12 12 12 12 12 12 12 12 12 12 12 12 1	0 5 9 9 13 13 13 18 24 29.3 29.3 33.5	112121212121212	177.6 178.3 175.8 123.0 51.7 73.3 49.4 -22.0 265.6 72.7 40.6 0.9 -14.0 -15.8	85.3 66.9 62.7 84.7 77.7 74.2 69.5 87.2 85.2 85.2 84.1 76.9 67.9 71.1 65.8	1.667 2.429 2.196 2.513 2.070 2.363 1.914 1.904 1.299 1.824 1.852 1.757 2.210	W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4	111111111111111111111111111111111111111	12.7 22.3 22.3 32.4 42.6 42.6 42.6 52 52 62.2 62.2 62.2 71.8 71.8 82.1	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	116.7 120.9 121.6 113.2 119.7 108.6 119.0 123.8 119.0 108.4 110.2 100.0 100.7 113.6	61.1 55.2 54.7 63.9 63.8 62.8 63.7 69.0	2.694 2.881 2.895 3.105 3.326 -4.047 2.894 2.708 2.985 -5.749 -5.127 3.741 3.899 3.559
12 12 12 12 12 12 12	33.5 38.5 38.5 43.1 43.1 49	2 1 2 1 2 1	-20.3 -36.3 -14.3 -48.4 -63.6 -37.7	63.9 57.6	3.913 24.665 22.668 14.298 16.622 8.799	W 4 W 4 W 4 W 4 W 4	1 1 1 1 1 1	82.1 91.5 91.5 102.2 102.2	2 1 2 1 2 1	114.7 115.8 112.9 113.6 108.1 96.8	68.9 65.8 66.9 59.6 61.4 73.0	3.564 3.169 3.151 3.611 3.669 3.968

$\begin{array}{c} 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\$	$\begin{array}{c} 49\\ 53.9\\ 53.9\\ 53.7\\ 58.7\\ 58.7\\ 58.7\\ 63.5\\ 69.1\\ 873.8\\ 79.3\\ 84.2\\ 85.3\\ 90.2\\ 90.6\\ 90.6\\ 79.4\\ 100.2\\ 104.7\\ 105.3\\ 109.4\\ 110.3\\ 115.7\\ 120.7\\ 125.7\\ 120.7\\ 125.7\\ 130.5\\ 135.1\\ 135.1\\ 141.6\\ 6\end{array}$	2121212121212341234123412123412341234123	$\begin{array}{c} -33.2\\ 4.8\\ 2.9\\ -16.5\\ -15.4\\ -16.7\\ -16.7\\ -16.7\\ -16.7\\ -13.1\\ -24.9\\ 1.5\\ -13.0\\ 156.3\\ -29.6\\ -25.2\\ -18.8\\ 71.6\\ 75.5\\ 44.7\\ 82.1\\ 175.4\\ 144.3\\ -80.0\\ -40.6\\ 228.9\\ 258.1\\ 44.6\\ 52.5\\ 49.2\\ 258.1\\ 44.6\\ 52.5\\ 49.2\\ 227.3\\ 208.6\\ -68.8\\ 249.8\\ -62.0\\ 231.9\\ 9.1\\ 38.0\\ 19.6\\ 19.1\\ 19.0\\ 9.3\\ 11.3\\ -1.5\\ 228.9\\ 227.3\\ 208.6\\ -68.8\\ 249.8\\ -62.0\\ 231.9\\ 9.1\\ 38.0\\ 19.6\\ 19.1\\ 19.0\\ 9.3\\ 11.3\\ -1.5\\ 228.9\\ 227.3\\ 208.6\\ -68.8\\ 249.8\\ -62.0\\ 231.9\\ 9.1\\ 38.0\\ 19.6\\ 19.1\\ 19.0\\ 9.3\\ 11.3\\ -1.5\\ 228.9\\ 227.3\\ 208.6\\ -68.8\\ 249.8\\ -62.0\\ 231.9\\ 9.1\\ 38.0\\ 19.6\\ 19.1\\ 19.0\\ 9.3\\ 11.3\\ -1.5\\ 228.9\\ 227.3\\ 208.6\\ -68.8\\ 249.8\\ -62.0\\ 231.9\\ 9.1\\ 38.0\\ 19.6\\ 19.1\\ 19.0\\ 9.3\\ 10.5\\ 24.9\\ 25.8\\ -62.0\\ 25.8\\ -68.8\\ 24.9\\ 25.8\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8\\ 24.9\\ -68.8$	65.5 64.8 69.7 73.2 74.8 76.52 77.76.3 357.6 77.76.3 57.2 76.52 77.76.3 57.77.76.3 57.76.3 57.76.3 57.77.76.3 57.76.3 57.77.76.3 57.76.3 57.77.77.76.3 57.77.76.3 57.77.76.3 57.77.76.6 57.75.77.4 77.22.1.6 47.22.5.77.6 56.77.57.79.07.75.77.90.75 56.79.33.34.39.45.77.90.75.77.90.77.75.77.90.77.75.77.75.77.90.77.75.77.75.77.75.77.75.77.90.77.75.77.77	7.414 3.016 2.805 2.670 2.218 2.493 2.451 2.024 2.714 2.343 2.551 0.497 1.195 1.240 2.118 2.043 1.964 2.233 1.597 2.886 0.281 0.590 1.938 2.391 2.554 2.554 2.599 1.080 2.589 0.637 0.745 0.833 1.080 2.589 6.112 3.959 5.739 6.000 5.536 5.292 5
12 12	135.1 135.1	2 1 2 1 2 1 2 1 2 1 2	9.3 11.3	34.7 40.9	5.536 5.292

w 4 112.1 2 103.3 74.1 3.711

Northern Gorda Cores - Cruise W8508AA

IX.5 BULK CHEMICAL ANALYSES

ESCANABA TROUGH L6 - 85 - NC CORE 1 ELEMENTAL CONCENTATIONS (SALT AND CARBONATE FREE)

NO.	DEPTH	Na	Mg	A1	Si	Р	S	к	Ti	Cr	Mn	Fe	Со	Ni	Cu	Zn	Rb	Sr	Ba	Ce	PЬ	CaCO3	Salt	C1-H2O	SumOx
		×	×	×	*	×	*	×	×	×	×	×	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	×	×	*	/
05000			2 400																					77.60	
25808 25809		1.003	3.198	8.002 2				2.100 2.193			2.371		285	193	340	220	97 105	315 283	2593	1268 1458	119	0.80	9.10 9.40		93.40 94.00
25810		0.887	3.406	8.029 2			0.127		0.489	0.019 0.019	0.482 0.290	6.749	306	194 215	370 356	248 276	105	283	2649 2891	1400	102	1.10	10.40		92.60
25811		1.042	The second second	7.807 2				2.184		0.020	0.278	6.750	311 302	231	335	294	97	233	3075	1302	42	1.10	10.30	100 million (1997)	93.10
25812	19	0.827	3.600	8.291 2		0.075			0.403		0.320	6.621	302	251	381	319	103	249	3142	1579	64	1.70	12.10		94.40
25813	25	0.888	3.553	8.477 2		0.077	0.110		0.477	0.020	0.322	6.381	309	257	352	325	105	250	3124	1342	51		10.20		95.40
25814	30	0.762	3.572	8.512 2				2.275		0.020	0.311	6.416	308	245	328	318	112	261	2910	1094	80	1.70	10.70		95.00
25815	34	0.898	3.589	8.007 2				2.254			0.299	6.376	292	224	268	303	107	255	2881	1502	72		9.90		93.50
25816		1.060	3.627	8.104 2	and a second second			2.221		0.020	0.291		299	244	301	317	104	250	2895	1361	50	1.70	10.20		93.90
25817		1.015	3.584	8.149 2				2.258		0.020		6.470	301	228	278	301	108	247	2901	1515	63		10.10		93.80
25818	48	0.900	3.536	8.211 2		0.075					0.250	6.283	296	238	314	317	109	254	2955	1418	55	1.60	9.40		93.60
25819	53	1.064	3.551	8.296 2			0.141		0.487		0.229	6.459	293	224	295	297	108	253	2990	1414	57	1.50	8.60		94. 90
25820	58		3.544	8.262 2		0.078	0.129		0.484	0.020	0.184		303	215	327	280	109	259	2685	1382	60	1.60	9.50		94.50
25821	63	1.471	3.315	8.764 2	23.263	0.086	0.089		0.498	0.017	0.171		278	153	206	232	112	318	1804	1032	91	1.80	6.80	66.90	85.60
25822	67	1.244	3.516	8.532 2	29.287	0.082	0.120	2.357	0.506	0.020	0.209	6.530	276	170	219	238	97	232	2348	1267	55	0.60	9.00	73.20	96.50
25823	72	1.135	3.526	8.474 2	8.434	0.078	0.144	2.331	0.500	0.020	0.231	6.420	268	178	196	265	103	252	2564	1176	45	1.60	9.00	73.40	94.50
25824	78	1.121	3.546	8.605 2	8.927	0.083	0.126	2.351	0.505	0.020	0.247	6.459	282	211	213	268	106	279	2471	1303	76	2.50	8.00	70.80	96.30
25825	83	1.130	3.533	8.249 2	8.592	0.079	0.198	2.308	0.492	0.020	0.243	6.771	312	203	270	284	97	246	2390	1107	54	1.80	8.60	72.20	95.10
25826	89	1.071	3.585	8.455 2	8.615	0.076	0.160	2,265	0.493	0.020	0.258	6.313	287	233	282	314	103	256	2796	1395	36	2.30	9.30	74.00	94.60
25827	94	0.913	3.505	8.171 2	8.163	0.076	0.144	2.262	0.480	0.021	0.233	6.314	283	221	269	313	104	260	2772	1422	44	2.20	6.40	65.70	94.12
25828	99	1.019	3.498	8.304 2	8.499	0.076	0.166	2.273	0.485	0.020	0.238	6.386	284	225	246	289	105	266	2660	1333	51	2.60	7.60	69.60	94.80
25829		1.039	3.459	8.283 2	28.329	0.076	0.133	5.588	0.487	0.019	0.210	6.449	294	213	269	275	97	258	2431	1180	41	2.20	8.10	70.90	94.20
25830				8.434 2				2.278			0.208	6.379	298	219	304	265	95	250	2406	1363	27	2.20	8.40		94.70
25831		1.084		8.569 2			and the second se	2.293			0.165	6.483	533	227	328	257	102	556	2525	1206	39	1.20	8.30		94.70
25832		1.094		8.519 2		0.074		2.275			0.177	6.247	595	215	298	298	105	253	2666	1348	54	2.00	7.10	100,000,000,000,000,000	94.80
25833	-	1.171		8.603 2		0.078	0.227		0.499		0.204	6.392	273	253	330	305	100	259	2701	1398	32		7.70	Contraction (1) (1996)	96.70
25834		1.010		8.457 2			0.252		0.494		0.190	6.272	300	221	278	297	109	257	2610	1295	60		7.80		94.40
25835		1.030		8.325 2				2.240			0.195		302	225	319	287	107	281	2520	1214	53		7.90		93.92
25836	-			8.335 2				2.240			0.209	6.458	298	233	322	309	103	293	2549	1425	45	4.20	8.00	70.60	94.50
25837	S 10 100	1.032		8.117 2		0.079	0.308		0.477	0.020	0.213	6.381	257	232	327	309	102	308	2529	1335	41		7.30		93.50
25838 25839	148 154		3.516 3.328	8.399 2 8.403 2				2.264		0.020	0.220	6.376	322	245	344	305	102	305	2439	1353	45	4.90	7.70		94.10
25840	154	0.773	3.328				0.250		0.502	0.020	0.197	6.432	42	209	140	277	117	295	2282	565	35	4.10	7.00		97.20
25841	163	0.749		8.548 2			0.196		0.499		0.178	6.534	38	193	113	264	115	290	2216	554	32	4.00	7.50		97.00 98.00
25842	168	0.745		8.736 2			0.188	2.336		0.020	0.168	6.592	42	203	136 136	262	117	289 295	2169 2139	556 .553	32 36	4.10 4.50	7.50 7.00		
25843	173		3.264	8.818 2			and the second se	2. 407		0.020 0.019	0.159	6.693 6.809	44 40	198 167	136	260 241	117	272	1951	502	30	4.50	6.70	and the second sec	98.50 98.40
25844		1.156	3.189	9.480 2			0.086	2.699		0.019		6.951	40	111	102	172	120	279	1062	385	25	1.80	5.00		100.10
25845	183		3.180	9.366 2		0.092		2.636		0.015	0.148	6.797	36	101	74	172	115	296	1199	406	24	2.90	5.00		97.60
25846	int and the second		3.052	9.707 2			0.080	2.727	0.579	0.014	0.171	6.633	39	91	78	154	118	315	895	357	24	2.90	4.20		99.90
25847		1.296		9.673 2			0.084		0.577	0.013	0.148	6.703	39	90	68	154	123	317	1007	383	.27	2.90	4.60		100.40
25848				9.614 2							0.144		39	84	79	150	121	318	958	376	26	2.90	4.10		
20010						2. 100	0.000		0.0.0	0.013	0.144	5.047	,	04		100		510	200	0,0	20	C. 50	4.10	00.00	2.21.40

*CaCo3 calculated from Ca abundances, assuming 0.7% noncarbonate Ca

IX.5. -1-

ESCANABA TROUGH L6 - 85 - NC CORE 8 ELEMENTAL CONCENTRATIONS (SALT AND CARBONATE FREE)

NO.	DEPTH	NA ≯	MG %	AL X	SI ≭	P ≭	s *	ĸ ≭	⊺1 ≭	CR	MN X	FE X	CO ppm	NI ppm	CU PPM	ZN PPM	RB ppm	SR ppm	BA ppm	CE ppm	РВ ррм	CaCO3 %	SALT	CL-H2D %	SUM CX %
25709	ø	0.991	3.191	7.947	27.914	0 107	a 121	2.113	0 479	0 013	0 055	6 574	717	204	351	254	104	269	2960	1286	78	0 60	9.90	75.40	92.40
25710	-	0.980	3.227	8.066	28.627			2.193						192	310	266	108	267	2748	1323	75		8.80	73.00	93.20
25711	11	1.091	3.246	8.395	29.042									174	299	251	107	280	2272	1228	63	1.30			95.00
25712	16	1.174	3.248	8.907	29.598									192	292	237	101	289	2518	1303	43	1.80		71.40	96.90
25713	21	1.562	3.223	9.247	29.186				0.522					107	201	177	104	329	1239	1038	48				98.40
25714	24	1.383	3.198	8.520	28.923	0.094	0.175	2.340	0.509	0.016	0.191	5.629	248	182	251	212	112	314	1896	1204	58		7.40	69.10	95.00
25715	29	1.291	3.338	8.351	28.982	0.084	0.086	2.342	0.505	0.018	0.155	6.136	278	165	303	240	104	268	2431	1547	43	1.00	7.90	70.40	95.30
25716	33	1.568	3.141	8.618	28.662	0.039	0.120	2.393	0.523	0.015	0.132	5.788	259	140	268	182	108	311	1418	953	55	1.40	5.10	60.00	96.12
25717	38	1.557	3.188	9.170	28.665	0.105	0.354	2.480	0.539	0.015	0.121	5.741	291	112	230	170	105	322	1176	1195	48	1.50	4.70	58.10	97.30
25718	42	1.608	3.101	9.089	28.827	0.103	0.277	2.454	0.528	0.014	0.131	5.681	263	119	220	174	105	327	1281	1080	43	2.10	5.20	60.20	97.20
25719	47	1.667		9.076	28.900	0.105	0.315	2.444	0.530	0.014	0.126	5.606	260	114	230	165	107	333	1147	989	60	1.90	4.30	55.40	97.60
25720	52	1.508	3.134	8.840	28.678		0.289	2.408	0.528	0.014	0.132	5.770	265	124	219	178	103	311	1463	1196	49	1.60	4.60	57.50	96.70
25721	57	1.769	2.890	8.475	28.727		0.345			0.014		5.410		105	224	149	89	320	1027	1053	22	1.90	3.70	51.50	95.80
25722	62	1.803	2.789	8.410	28.776			2.257			0.107			91	188	137	91	338	974	1009	29	2.10	3.80	52.20	95.40
25723	67				29.215			2.238						103	192	141	92	355	938	918	21			49.50	96.50
25724	72		3.191	9.075	28.759									553	260	200	99	281	1423	1153	53	1.30		61.90	97.40
25725	77	1.177	3.384	8.154	28.287						0.921			213	318	296	100	255		1507	35		7.70	70.00	94.60
25726 25727	82 87	1.115	3.454 3.464	8.370 8.292	28.868 28.499							6.366	306	242	281	306	103	244	3026	1549	25	1.20	9.20	73.90	94.82
25728	92		3.464	8.412	28.499			2.280				6.439		233	303	308	107	265	2938	1414	37		8.50	72.00	94.40
25729	97	1.168	3.374	8.667	28.851			2.334			0.184 0.171		295	227 208	312 289	312 265	104	253		1313	49		8.30	71.60	95.10
25730	102	1.039	3.375	8.850	28.939			2.354			0.171			208	317	265	103 109	255 259	2507 2727	1376 1321	37 52	1.40	7.30	68.80	95.90
25731	107	1.054	3.376	8.532	28.575		0.194			0.020		6.313		228	300	302	102	239		1354	35		7.60 6.30	69.70 65.30	96.30 72 95.60 72
25732	112	1.084	3.433	8.213	28.436		0.135			0.020		6.360		229	299	304	102	259	2712	1352	38			67.30	94.70
25733			3.431	8.116	28.274						0.184			224	300	291	97	251	2634	1232	34				94.10
25734			3.394	8.609	28.645					0.021		6.312		226	296	266	110	232	2654	1319	51		7.10	68.00	95.70
25735	127	1.121		8.667	28.871								291	216	275	276	106	237		1365	46		7.40	69.00	96.00
25736	132	1.140	3.342	8.534	28.751						0.165			221	305	300	104	259	2692	1330	48		7.00	67.70	95.60
25737	137	1.171	3.420	8.377	28.603						0.177			234	303	300	102	268		1354	34		7.70	70.00	94.80
2573 8	142	1.102	3.335	9.380	29.684	0.079	0.204	2.441	0.514	0.020	0.183	6.249	296	234	300	286	104	275	2577	1331	42	3.00	7.70	78.00	98.70
25739	149	1.129	3.421	8.267	28.245	0.078	0.154	2.276	0.497	0.019	0.191	6.147	292	237	311	292	104	309	2537	1485	39	4.10	6.20	64.70	94.60
25740	153	1.119	3.440	8.267	27.956	0.079	0.202	2.285	0.496	0.019	0.202	6.225	308	247	313	296	106	315	2448	1377	42	4.40	7.10	68.00	93.70
25741	156	1.166	3.401	8.400			0.194	2.350	0.504	0.020	0.197	6.185	302	239	274	283	110	313	2386	1225	51	4.20	7.00	67.80	93.90
25742	161	1.148	3.427	8.388	27.799		0.167			0.020	0.187	6.352	315	232	303	266	105	301	2297	1398	34	4.00	7.30	68.00	93.70
25743	166		3.433		27.858					0.020		6.507		223	270	264	107	289	2238	1273	46	3.70	7.20	68.40	94.20
25744	171	1.164	3.411		27.676					0.020		6.520		223	322	263	105	293	2180	1311	31		7.10	67.80	94.00
25745	176		3.369	8.769	27.471			2.499			0.141			190	300	216	115	280	1621	990	42		6.70	66.70	95.00
25746	180	1.301	3.423		27.575						0.163			166	243	204	106	276	1705	1148	28		5.50	61.90	95.80
25747 25748	185 190	1.529 1.553	3.354	9.386	27.440			2.629						164	302	206	113	307	1352	1063	24		5.20	60.60	96.70
25748	190	1. 494	3.326 3.319			0.101				0.015		6.702		148	266	196	116	306	1199	830	37		5.60	62.20	96.70
25750	200		3.251		27.535						0.172			145	273	188	112	302	1323	977	29	2.70	5.70	62.80	97.10
25751	205		3.244		27.249						0.165		307	121	273	165	117	315	987	829	36		5.20		97.30
25752	210	1.595			27.174						0.161			124 140	311 356	167 176	113 120	309 319	1018 996	976 882	-24		5.30		97.30
25753	215		3.249		27.309			2.739				6.824		124	305	167	122	319	986	882	44 46	2.80 2.80	5.10 5.20	60.10 60.60	97.20 97.60
25754	220	1.612		9.725	27.212		0.303		0.568		0.155	6.844		123	305	166	122	321	986 943	655	46 50		5.20 4.80	58.20	97.60
25755	225	1.563		9.846		0.108			0.567	0.014				123	302	168	109	309	943	690 919	17	2.80	4.80	61.60	97.40
25756	230		2.757			0.114								122	298	151	100	362	1026	1069	25	3.70	3.10	47.30	97.30
25757	233				27.247												115		1168	979				60.60	36.60
	_																	2.50					0.00	20100	20100

IX.5. -2-

ESCANABA TROUGH L6 - 85 - NC CORE L10 ELEMENTAL CONCENTRATIONS (SALT AND CARBONATE FREE)

NO.	DEPTH	Na	Mg	A1	Si	P	S	к	Ti	Cr	Mn	Fe	Со	Ni	Cu	Zn	RЬ	Sr	Ba	Ce	РЬ	Opal	CaCO3	Salt	С1-Н2О	SumOx	
		*	*	×	×	*	×	×	×	×	×	*	ppm	ppm	ppm	ppm	ррм	ррм	ppm	ppm	ppm	Si02(%)	×	7	%	74	
05750	2	1 000	2 05 0	0 476	28.370	A 115	0 044	2 220	0 514	0.010		6 000	74				107	715	1007	500	10	11 50	1 00	7 10	10 10	00 40	
25758 25759	2	1.009	3.0689		28.370	0.106	0.044 0.057	2.239	0.514	0.016 0.018		6.088 6.375			_				1823 2406		40	11.50	1.20	8.50	69.10 73.20	98.40 98.00	
25760	12				29.400				0.490	0.018	0.182								2344		48	14.20	1.90	8.80	73.80	98.70	
25761	16				29.378			2.284		0.018		6.114							2529		41	13.50	1.60	8.00	71.70	98.70	
25762	21		3.346		29.522			2.177		0.020	0.232	6. 324							2848		43	13.80	1.60	10.00	76.40	98.70	
25763	26		3.355				0.055			0.019	0.234	6.225							2911		42	13.40	150	9.50	75.60	98.00	
25764	31	0.546	3.386	7.913	29.685	0.065	0.038	2.197	0.475	0.020	0.231	6.268							2909		39	13.90	1.60	9.50	75.40	99.00	
25765	36	0.632	3.369	7.908	29.162	0.066	0.041	2.241	0.474	0.020	0.228	6.306	36	202	160	296	111	253	2756	618	40	13.00	1.80	9.20	74.90	98.10	
25766	41				28.955	0.065	0.023	2.221	0.478	0.020	0.205	6.346	37	185	123	279	114	243	2745	625	36	12.50	1.30	9.50	75.50	97.70	
25767	46		3.325		28.829	0.066	0.046	2.269	0.486	0.020	0.194	6.172	35	230	134	291	116	255	2733	630	34	11.30	1.60	9.10	74.60	97.80	
25768	51		3.336		29.053	0.066	0.045	2.230	0.485	0.020		6.216	39	191	161	281	118	256	2748	621	38	11.90	1.70	8.90	74.00	98.20	
25769	55	0.638			29.052	0.065	0.055	2.301	0.486	0.020		6.424							2806		34	11.80	1.40	8.10	72.00	98.50	
25770	60	0.737			28.731	0.068	0.055	2.283		0.019	0.164	6.508							2413		38	10.80	1.80	8.30	72.60	98.10	
25771 25772	65 70		3.293		28.629	0.075	0.037	2.358	0.507	0.019	0.153	6.184							1975		43	9.80	1.60	7.40	70.00	98.20	
25773			3.219		28.724	0.082	0.068 0.055	2.342 2.345	0.503	0.017		5.951							2005		44	9.70	2.40	6.50	67.10	97.30	
25774	81		3.337		28.688			2.291		0.017		5.785							1759		45	10.50	2.90	6.70	67.70	98.00	
25775	86		3.302		28.682			2.302	0.494 0.487	0.020 0.020	0.188 0.189	6.148 6.417							2648 2604		34 32	9.80 10.70	2.40	6.80 7.50	68.30 70.50	98.00 98.10	
25776	91		3.267		28.685	0.064		2.297		0.020		6.277							2617		36	10.80	2.50	7.60	70.70	98.00	
25777	96		3.313		28.713	0.065	0.066	2.273	0.490	0.020	0.189	6.282			-				2501	-	38	10.40	2.10	7.70	71.10	98.10	
25778	101		3.300		28.564		0.063	2.282		0.020	0.148	6.332							2420		32	9.50	1.00	7.80	71.40	97.90	
25779	106	0.786	3.238	8.513	28.696	0.064	0.101	2.312		0.020	0.158	6.207							2531		32	10.50	1.70	7.30	69.70	38.00	
25780	110	0.738	3.238	8.470	28.585	0.066	0.104	2.266		0.019		6.124							2649		34	10.50	2.30	6.80	68.00	97.50	Z
25781	115	0.807	3.301	8.354	28.406	0.065	0.072	2.292	0.486	0.020	0.193	6.224	37	195	142	269	110	250	2539	585	35	10.10	1.90	5.70	63.90	97.30	ŝ
25782	121	0.628	3.358		28.672		0.111	2.245	0.492	0.020	0.192	6.236	36	213	129	281	116	277	2437	585	35	9.90	3.20	8.30	72.70	97.90	
25783	126	0.722			28.472			2.285	0.488	0.020	0.192	6.156	32	183	129	279	115	300	2422	590	36	10.20	4.20	6.50	67.20	97.30	
25784	130	0.644			28.271			2.245		0.020		6.125							2311		38	10.00	4.10	6.50	67.10	96.60	
25785	135	0.680			28.397		0.101	2.283		0.019		5.925							2049		35	11.10	6.50	7.10	69.20	96.60	
25786	142		3.303		28.799		0.135	2.313		0.019		6.538							2144		34	10.40	4.10	7.80	71.10	98.80	
25787 25788	147		3.329		28.228	0.073		2.368		0.019		6.545							5582		31	8.30	4.40	7.50	70.30	97.90	
25789	153 158		3.318 3.295		27.930 27.950	0.073		2.338		0.018									1931		31	8.20	4.90	7.00	68.80	97.10	
25790	161		3.242		27.861	0.077		2.451		0.018		6.975							1793		30	7.50	2.60	6.40	66.60	98.20	
25791					27.572		0.065 0.076	2.557 2.693	0.527			7.306							1397		27	7.00	1.90	5.60	63.70 57.80	93.00 33.30	
25792		1.297			27.752			2.697	0.579	0.014 0.013		6.753	· · · · ·	117 100		169 150			974 957		26 24	4.40	2.60	4.50		93.30	
25793		1.256			27.864				0.580	0.014		6.716	42			153			935		26	4.30	2.80	4.70	59.10		
25794	181				27.921			2.721	0.581		0.141		41	85		147			975	_	27	4.20	2.90	4.20	56.00		
25795	186				27.882		0.097		0.574	0.014		6.599	41	86		145			927		25	5.40	3.00	4.00	55.10		
25796	193	1.330	2.953	9.918	27.837	0.097				0.013		6.595	41	86		154			926		25	5.10	2.80	4.00	54.90		
25797	197					0.097		2.758	0.569			6.514		82		150			942		28	5.70	2.90	3.70	52.80		
25798	200	1.336	2.923	9.842	28.012	0.098	0.062	2.759	0.575	0.013	0.133	6.550	41	84	90	150	123	318	953	370	26	6.00	3.00	4.20	55.90	100.30	
25799	205	1.328	2.920	9.735	27.673	0.097	0.072	2.747	0.567	0.013	0.130	6.507	37	78	78	151	123	321	972	379	28	5.80	3.00	3.60	52.40	99.30	
25800		1.323			28.172		0.058	2.717	0.568	0.013	0.133	6.490	44	88	99	151	125	323	903	365	27	6.70	3.00	4.00	55.00	100.40	
25801			3.044		27.973			2.706	0.539		0.229	6.915	45	102	89	172	128	299	1324	434	28	7.10	2.50	4.70	59.40	99.70	
25802			2.971			0.093		2.896	0.558	0.014		6.595		106					1035		28	5.70	2.70	4.00	54.90		
25803		1.251					0.061	2.904	0.566	0.014		6.627	44	97		_			1066		27	5.60	2.80	4.20	56.40		
25804							0.052	2.897	0.564	0.014	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	6.579	43	90					1001	1000	29	5.70	2.80	4.10	55.70		
25805		1.330					0.062	2.915	0.563	0.014		6.557	42	87					1011		53	5.40	2.80	3.90	54.50		
25806					27.817				0.561		0.129								1073		26	5.10	2.80	4.20	56.40		н
25807	246	1.000	C. 300	9.934	27.830	0.095	0.078	5.906	0.559	0.014	0.128	6.540	39	-86	86	156	128	318	965	367	26	4.90	2.80	3.60	52.40	100.20	×

IX.5. -3-

ESCANABA TROUGH L6 - 85 - NC CORE 12 ELEMENTAL CONCENTRATIONS (SALT AND CARBONATE FREE)

ND.	DEPTH	NA	MG	AL	SI	P	S	к	ΤI	CR	MN	FE	CO	NI	CU	ZN	RB	SR	BA	CE	PB	CaCO3	SALT	CL-H2O	SUM OX
		×	×	×	×	*	×	×	*	×	×	×	ppm	ppm	ppm	*	7	*	*						
25678	0	1.287	3 216	8.038 27	7 945	0 103	0 075	2 186	0 493	0 017	0.597	6.143	277	155	265	208	106	289	2173	1037	82	0.60	7.70	69.80	93.10
25679	-		3.311					2.307		0.017	0.193	6.278	276	159	235	236	103	274	2190	1076	68	1.10	8.30		95.10
25680	ğ	0.900	3.412			0.081	0.106	2.389		0.020	0.218	6.403	276	205	206	294	105	256	2835	1197	58	1.60		77.00	97.80
25681	13		3.463	8.494 2				2.316				6.419	266	196	182	281	114	265	2672	1434	67	1.60	10.10		95.42
25682	18	1.123	3.441	8.336 28		0.079	0.129	2.276		0.020	0.214	6.353	280	209	231	290	107	252	2768	1410		1.20	8.80	72.80	94.30
25683	24	1.116	3.471	8.416 20	8.589	0.078	0.150	2.297	0.498	0.021	0.185	6.420	291	226	276	291	106	249	2897	1388	47	1.20	9.00	73.40	94.50
25684	30	1.152	3.431	8.220 28	8.224	0.078	0.172	2.278	0.489	0.020	0.186	6.591	272	179	177	252	107	245	2606	1146	56	0.80	8.70	72.70	93.70
25685	34	1.298	3.370	8.243 2	8.397	0.087	0.154	2.301	0.500	0.018	0.143	6.458	273	153	236	230	107	288	2078	1285	72	1.60	8.00	70.90	94.30
25686	39	1.785	2.618	8.127 23	9.131	0.108	0.334	2.147	0.491	0.011	0.093	4.695	223	89	171	123	92	351	877	944	47	2.60	2.60	42.10	94.90
25687	44	1.763	2.598	8.091 2	9.121	0.106	0.324	2.144	0.502	0.012	0.100	4.694	219	89	170	122	93	363	892	805	39	2.70	2.90	45.60	94.60
25688	49	1.499	3.131	9.568 29	9.528	0.096	0.401	2.458	0.528	0.017	0.241	6.023	284	213	239	213	99	274	1779	1179	48	1.30	5.90	63.60	33.607
25689	54	1.207	3.468	8.371 20			0.186	2.292		0.020	0.439	6.364	300	215	535	288	102	251	2663	1240		1.50	7.40		95.00
25690	59	1.194	3.469	8.265 28		0.079		2.269		0.020	0.222	6.418	289	212	269	296	102	260	2605	1314	45	1.80	7.80		34.20
25691	64	1.205	3.497	8.212 2				2.253		0.020	0.231		302	233	289	319	103	259	2810	1457	42	2.20	7.80	70.10	94.40
25692		1.183	3.491	8.085 20		0.075		2.247	0.488	0.020	0.231	6.452	304	233	290	295	99	239	2640	1256	36	1.60	7.70	69.80	94.10
25693			3.412	8.385 20			0.183		0.494	0.021	0.173	6.438	296	221	288	272	98	230	2651	1378	38	1.00	7.60	69.60	94.80
25694	80	1.199	3.369	8.339 20				2.272		0.020	0.190	6.391	279	201	238	289	99	242	2634	1451	38	1.50	7.30	68.70	94.50
25695	86	1.215	3.373	8.323 2		0.079		2.270	0.491	0.020	0.203	6.251	283	203	243	282	107	261	2613	1437	58	1.70	7.50	69.30	94.50
25696	91	1.391	3.233	8.353 28			0.187	2.259	0.503	0.016	0.154	5.572	267	166	268	223	96	305	1824	1052	39	2.00	6.00	63.90	94.60
25697	96	1.234	3.427	8.307 2			0.124		0.492	0.019	0.175	6.323	302	194	309	258	104	269	2439	1300	61	1.50	8.30	71.50	94.30
25698	101	1.233	3.368	8.248 28		0.083	0.157	2.251	0.491	0.018	0.225	6.195	277	178	252	244	97	276	2345	1235	44	1.60	7.60		94.20 94.30
25699 25700	106		3.261 3.255	8.220 20		0.086	0.300	2.232	0.490	0.017	0.228	5.932	284	199	286	256	93	325 325	2197 2013	1347 1028	35 54	3.40 1.80	7.20 7.20	68.30 68.40	94.30
25700	116		3.189	8.887 2		0.087 0.098	0.174 0.251	2.286 2.393	0.487 0.526	0.016 0.016	0.183 0.158	5.785 5.895	271 272	147 150	230 232	212 193	101 105	298	1554	1134	54 47	1.50	5.80		96.80
25702	121	1.514	3.169	9.056 2			0.208	2.393	0.536	0.015	0.158	6.324	287	125	219	178	110	319	1272	789	50	2.40	4.80		96.30
25703		1.617		9.714 2			0.143	2.694			0.153	6.841	311	118	262	172	119	317	1048	828	41	2.80	4.40		97.30
25703	131	1.599		10.389 2			0.143	2.810	0.578	0.014	0.148	6.848	302	114	249	166	114	313	1011	879	30	2.80	4.20		
25705	136	1.661		9.635 2		0.110		2.687	0.568	0.014	0.145	6.826	304	116	253	170	112	320	1029	960	29	2.90	4.20		
25706	142	1.682	3.190					2.660		0.014	0.142	6.830	297	111	213	163	114	316	1047	984	34	2.80	4.10		
25707	147		3.172					2.705			0.141	6.847	310	116	263	167	118	318	1054	1070	39	2.80	4.10		
25708				9.720 2				2.690		0.014			309	121	272	170	113	312	938	657	30	2.80	4.20		97.40
23/00								2. 350				2. 274								2.41	20				

エン・し・ ーチー

*CaCO3 calculated from Ca abundances, assuming 0.7% noncarbonate free

.

NORTHERN GORDA RIDGE W8508AA CORE W6 ELEMENTAL CONCENTRATIONS (SALT AND CARBONATE FREE)

ND.	DEPTH	NA	MG	AL	SI	P	S	к	TI	CR	MN	FE	CO	NI	CU	ZN	RB	SR	BA	CE	PB	CaCO3	SALT	CL-H20	SUM DX
		×	×	×	×	*	*	×	×	×	×	×	mqq	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	%	×	*
25941	0	0.891	3.403	8.213	27.698	0.083	0.086	2.036	0.495	0.023	0.485	6.611	324	237	308	233	106	209	2669	1283	41	0.20	9.20	73.90	92.30
25942	2	0.917	3.423	7.855	27.991	0.074	0.095	2.011	0.476	0.023	0.153	6.775	328	213	293	239	100	186	2733	1225	36	0.00	8.80	72.80	92.10
25943	6.5	1.016	3.483	8.100	29.552	0.070	0.114	2.141	0.485	0.024	0.120	6.319	320	251	392	236	106	201	2782	1324	33	0.50	8.30	71.70	95.60
25944	10	0.784	3.465	8.498	29.773	0.069	0.106	2.129	0.485	0.023	0.127	6.262	294	234	293	276	102	208	2732	1232	26	0.90	8.50	72.20	96.20
25945	16	0.845	3.409	8.422	29.524	0.066	0.114	2.142	0.479	0.023	0.130	6.252	299	233	296	278	95	197	2692	1273	19	0.70	8.40	71.80	95.60
25946	20	0.945	3.594	7.928	29.196	0.066	0.131	2.107	0.483	0.023	0.149	6.298	293	238	254	285	101	206	2660	1437	21	0.70	8.90	73.00	94.40
25947	26	0.968	3.609	7.937	28.995	0.066	0.184	2.095	0.478	0.023	0.156	6.335	299	235	279	281	103	200	2583	1412	33	0.80	8.60	72.40	94.20
25948	30	1.065	3.714	7.712	28.503	0.065	0.200	2.081	0.477	0.023	0.152	6.431	281	233	240	281	98	197	2559	1319	19	0.60	9.00	73.30	93. 72
25949	36	0.982	3.651	8.312	28.779	0.067	0.200	2.152	0.483	0.023	0.152	6.442	301	233	246	274	104	202	2482	1301	34	0.70	9.20	73.80	94.40 -1
25950	40	1.035	3.632	8.211	28.597	0.067	0.227	2.155	0.481	0.023	0.153	6.411	299	246	295	277	96	199	2602	1262	24	0.70	8.10	71.10	94.42 01
25951	46	1.045	3.713	8.354	28.704	0.068	0.215	2.186	0.489	0.024	0.138	6.532	309	238	293	264	104	200	2591	1310	33	0.60	9.40	74.40	94.50
25952	50	1.066	3.742	8.461	28.397	0.068	0.197	2.204	0.493	0.024	0.130	6.459	312	244	335	262	104	191	2561	1306	33	0.30	8.70	72.60	94.52
25953	56	1.024	3.733	8.495	28.365	0.067	0.195	2.205	0.493	0.025	0.132	6.539	322	259	371	273	102	193	2528	1304	26	0.60	8.70	72.50	94.50
25954	60	1.007	3.694	8.630	28.578	0.067	0.193	2.221	0.496	0.024	0.145	6.525	296	237	252	290	101	194	2418	1123	29	0.60	9.40	74.20	34.80
25955	66	0.959	3.667	8.760	28.905	0.068	0.139	2.236	0.498	0.024	0.157	6.374	310	250	335	285	106	200	2418	1177	35	0.80	8.20	71.30	36.00
25956	70	1.188	3.658	7.848	27.712	0.066	0.240	2.110	0.486	0.022	0.167	6.387	307	247	280	284	97	204	2474	1323	19	1.00	8.20	71.42	92.20
25957	76	1.006	3.674	8.718	28.893	0.068	0.155	2.262	0.503	0.024	0.159	6.462	313	252	309	267	105	199	2470	1158	43	0.60	7.10	67.90	96.60
25958	80	1.063	3.675	8.405	28.353	0.067	0.229	2.199	0.485	0.024	0.152	6.512	350	270	365	277	89	188	2407	1291	16	0.80	8.20	71.40	94.50
25959	86	1.002	3.687	8.511	28.511	0.068	0.175	2.225	0.495	0.024	0.153	6.425	305	240	287	261	99	186	2415	1211	21	0.42	7.30	68.60	95.30
25960	90	1.087	3.666	8.624	28.481	0.069	0.253	2.246	0.497	0.023	0.139	6.473	310	253	349	263	102	193	2344	1252	36	0.50	7.60	69.70	95.40
25961	96	1.075	3.627	8.599	28.278	0.067	0.305	2.247	0.495	0.023	0.135	6.442	310	245	343	272	108	197	2326	1077	44	0.40	7.20	68.30	95.10
25962	100	1.062	3.644	8.566	28.530	0.068	0.268	2.235	0.493	0.023	0.158	6.439	322	272	320	275	103	195	2364	1258	33	0.30	7.80	70.20	95.20

*CaCO3 calculated from Ca abundances, assuming 0.7% noncarbonate Ca

NORTHERN GORDA RIDGE W8508AA CORE W9 ELEMENTAL CONCENTRATIONS (SALT AND CARBONATE FREE)

NO.	DEPTH	NA	MG ×	AL ×	SI ≭	P X	s	ĸ	TI ×	CR ×	MN %	FE %	CO	NI	CU	ZN	RB	SR	BA	CE	PB	CaCO3 %	SAL.T	CL-H20 %	CUN DA
			*	~	*	<i>/</i> •	~	~	~	~	*	7	рры	bbw	ppm	ppm	bbw	b bw	₽ D ₩	ppm	bbw	~	^	~	~
25894	0	0.918	3.464	8.246	28.384	0.084	0.106	2.012	0.497	0.024	0.361	6.506	309	231	313	230	96	198	2768	1161	22	0.00	8.60	72.40	93.60
25895	3	0.988	3.487	8.100	28.730	0.070	0.101	2.027	0.485	0.024	0.097	6.508	303	229	302	275	98	191	2802	1163	21	0.10	7.90	70.40	94.30
25896	. 9		3.531	9.060	29.449		0.100	2.247	0.507	0.024		6.391	296	242	320	290	102	197	2750	1531	38	0.30	1 A 180 30 1	70.60	97.5%
25897			3.694	8.758		0.068		2.231		0.025	0.037	6.730	292	230	245	257	97	181	2610	1351	21	0.10	8.00.	70.70	96.40
25898				8.508	28.281			2.214		0.025	0.101	6.390	313	227	566	278	98	183	2506	1118	25	0.20	7.00	67.60	94.90
25899		1.097		8.502		0.068			0.514		0.100	6.410	291	229	273	278	102	198	2462	1095	31		7.20	68.40	95.20
25900		1.115		8.414		0.068			0.507			6.363	292	553	266	253	106	195	2454	1227	44		6.60	66.40	94. 96
25901 25902		1.124		8.517	28.310 28.184	0.069			0.515 0.512			6.379	304	233	287	270	101 96	196	2348	1165	38	0.40	6.80	67.00 63.00	95.10 94.90
25903		1.015			27.899							6.676 6.697	336 315	255 245	322 278	271	99 96	214	2121 2116	1357 1278	21 29	1.90	7.40	68.80	94.60
25904			3.649		27.549							6.676	309	235	266	244	101	211	2036	1006	27	1.60	6.60	66.30	93.70
25905			3.666		27.515							6. 481	302	223	245	233	104	233	1795	983	32	2.30	7.60	69.50	93.60
25906		1.044	3.648		27.620			2.259		0.024		6.447	297	221	246	224	104	243	1879	1046	29	2.70	7.10	68.10	94.10
25907		1.074							0.500				320	228	321	223	100	258	1950	1345	19		7.90	70.30	94.50
25908	-		3.617		28.027	0.076	0.117			0.022		6.491	315	235	311	230	104	291	1903	1212			7.10	67.90	95.50
25909	70	1.070	3.650	8.911	28.102	0.076		2.301		0.022		6.738	316	218	232	225	101	287	1927	1180	27		7.90	70.40	95.60
25910	76	1.027	3,622	8.903	27.960	0.077	0.139	2.272	0.515	0.022	0.117	6.637	340	227	282	243	103	283	1904	1137	34	4.50	7.40	68. 90	95.32
25911	81	1.032	3.563	8.771	27.571	0.078	0.142	2.274	0.519	0.021	0.120	6.615	330	232	337	240	105	303	1851	1204	35	5.10	7.40	69.00	94.22
25912	86	1.019	3.659	8.829	27.545	0.079	0.149	2.267	0.528	0.022	0.119	6.568	323	232	340	235	107	344	1906	1462	33	6.80	8.10	71.10	94.12
25913	91	1.017	3.662	8.569	27.509	0.079	0.251	2.238	0.515	0.022	0.126	6.774	320	255	302	224	100	383	1760	1181	23	8.70	8.10	71.00	93.90
25914		1.043			27.595	0.079		COLORA CONTRACTOR	0.525			6.695	318	216	270	210	108	410	1682	1113	38	9.20	9.30	74. 12	93.60 -1
25915		1.129							0.538			6.581	315	196	303	190	110	396	1612	1255	31	8.80	8.30	71.50	92.80 o
25916			3.378			0.085			0.542			6.628	324	184	301	179	168	447	1512	1395	42	10.80	7.70	69.90	94. 20
25917			3.473		27.583				0.531			6.257	302	189	304	198	100	390	1668	1394	56	8.40	6.50	6E.00	94.30
25918 25919						0.086			0.560				315	134	265	156	106	332	1074	1221	37	1000 C	5.70	62.50	94.10
25920			2.601 2.347	9.070 8.880	29.093 29.431	0.094 0.100			0.576 0.585				28Ø 264	124	273	143	94	316 331	838	854	30	4.60	4.30	55.70	97.20
25921		1.197		9.108		0.087				0.017			313	113 182	239 333	127	93 101	497	833 1525	1056	32 40	4.20 13.10	3.80 6.90	52.10	96.60 95.10
25922		1.165			27.571				0.538			6.364	325	195	319	192	100	457	1452	1209	22	12.10		67.20 68.20	93.10
25923			3.221		27.734		0.162					6.197	318	195	335	187	106	471	1476	1190	21		6.70	66.60	94.40
25924	143		3.189		27.467			2.274			0.137		326	191	331	178	100	449	1501	1245	19		6.80	66.80	93.70
25925	147				27.721				0.539			6.172	317		334	183	104	467		1166	21	11.50		67.50	94.32
25926	152	1.163			27.506	0.080			0.532			6.341	329	207	346	181	100	468	1610	1157		11.50		69.90	94.92
25927	156	1.160	3.490	8.617	27.205	0.080		2.175		0.019		6.467	344	217	347	184	97	501	1711	1187	26	12.50	7.30	68.50	93.30
25928	162	1.153	3.636	8.700	27.808	0.081	0.270	2.260	0.521	0.020	0.130	6.914	363	240	410	209	103	452	1748	1356	39	10.80	7.70	69.70	95.30
25929	166	1.128	3.575	8.599	26.927	0.075	0.235	2.170	0.516	0.020	0.152	6.690	343	224	331	208	105	427	1704	1254	37	9.70	7.50	69.20	90.90
25930			3.631	A	27.508	0.077			0.523	0.021	0.120	6.680	321	217	342	194	110	384	1657	1173	49	7.70	7.30	68.60	94.80
25931		1.147				0.074			0.530			6.676	341	230	366	191	101	331	1645	1247		5.80	7.30	68.50	95.00
25932		1.208			27.636	0.078			0.531			6.150	317	515	353	188	99	387	1687	1190	21	7.90	6.00	63.80	94. 80
25933			3.533						0.527			7.077	329	214	298	191	92	340	1692	1196	19	6.90	8.10	70.90	99.30
25934		1.230			27.820		0.293		0.532				331	216	314	197	98	341	1669	914	28	6.00	7.50	69.40	95.00
25935		1.290	3.601	8.947						0.019		6.477	324	225	324	197	94	351	1583	1219	28		7.20	68.30	95.20
25936		1.170		9.021	27.754			2.221		0.021		6.342	327	241	314	207	101	357	1725	1316		7.00	7.80	70.20	94.00
25937 25938			3.601	9.076					0.537				323	247	318	208	96	316	1678	1049	25	5.70	8.10	71.10	95.70
25938		1.205	3.543		27.732 27.854	0.074		2.216		0.021		6.375	317	224	322	193	96	314	1665	1087	23	5.40	6.40	65.60	95.10
25940					27.854				0.541			6.796	319	220	265	177	90.	254	1570	998	18	3.30	8.10	70.90	95.20
C0340	550	1.210	3.515	8.884	E1.430	0.072	0.203	2.203	0.530	0.021	0.127	6.434	315	224	318	191	95	301	1622	1133	28	5.10	6.70	66.70	94.10