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Introduction 

If we could go back in time some 5 to 10 million years to the Pliocene 
Epoch and recreate the landscape of south-central Oregon, here are some 
of the things we would probably see: 

From a plain originally of slight relief, faulting has already delineated 
broad basins containing large, shallow lakes. To the west, the High Cas­
cade volcanoes are beginning to erupt on a grand scale. In and around the 
basins, volcanic vents, aligned along northwest-trending fissures, spew out 
fire fountains to form reddish-black scoria cones. These break through, 
spreading thin sheets of basaltic lava to fill depressions and further disrupt 
the existing drainage. When the basaltic magma rises beneath the lakes or 
near their borders, tremendous steam pressures are generated that trigger 
catastrophic initial explosions. Ash, lapilli, and large blocks of all the 
rocks involved are thrown high into the air in successive explosive erup­
tions to settle and to bui Id raised rims of ejecta around the funnel-shaped 
craters. In some, the explosive phase dies quickly and fluid magma rises 
to fill the craters with a lava lake. In others the magma solidifies at depth, 
or withdraws, and water enters to form crater lakes. In still others, the 
same vents or ones nearby again explode violently to modify the original 
simple features. 

Returning to the present, we see only the eroded and buried remnants 
of these peculiar volcanic features; our colorful reconstruction of the past 
had to be based on imagination and the little geologic evidence that re­
mains. 

* Ge010gist, State of Oregon Dept. of Geology & Mineral Industries. 
** Private Geologist, Portland, Oregon. 
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Distribution of Basaltic Tuff Landforms 

During the summer of 1962, we made a broad reconnaissance of north~ 
ern Klamath County and north-central Lake County to determine the dis­
tribution of the landforms described above to see if they form a pattern that 
would help to explain the special conditions necessary for their formation; 
we also looked for criteria that would make them easy to recognize. 

The index map (pages 82 and 83) shows the distribution of basaltic tuff 
landforms that have been definitely recognized in the field during this study 
and also during other assignments in Klamath and Lake Counties in 1959, 
1960, and 1961. 

There are concentrations in two brood northwest-trending zones, one 
in the Fort Rock-Christmas Lake valleys in northern Lake County and the 
other in the Yonna and Sprague River valleys of central Klamath County. 
Individual occurrences and s~all groups of occurrences have also been iden­
tified adjacent to the Klamath River west of Keno and in the southern Fre­
mont Mountains north and west of Lakeview, Oregon. 

Future study wi II be extended to the south and' east to cover the area 
bounded by Summer, Abert, and Alkali Lakes, and more detailed studies 
will be made of the individual landforms already recognized, to determine 
their original structures and origins. 

Definition of terms 

Maar, dry maar, ubehebe, tuff cone, tuff ring, and diatreme have all 
been used by various authors to describe relatively large, shallow, flat­
floored craters that resulted from short-lived volcanic explosions. 

Maar: As defined in the American Geological Institute glossary, a 
maari'S""Ci" relatively shallow flat-floored explosion crater, the walls of 
which consist largely or entirely of loose fragments of the country rock and 
only partly of essential, magmatic ejecta. Moors are apparently the re­
sult of a single violent volcanic explosion, probably of phreatic origin. 
Where they intersect the water table, they are usually filled with water 
and form natural lakes. The term was or"iginally applied to craters of this 
nature in the Eifel district of Germany." 

Dry maar or ubehebe: These terms have been used by Cotton (1941) to 
describe two small craters in Death Valley, California. These craters have 
raised rims built of layers of rock fragments derived from the immediately 
underlying terrain. 
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Tuff cone or tuff ring: These are synonymous terms for volcanic cones 
built primarily of consolidated ash and generally shaped something like a 
saucer l with a rim in the form of a wide circle and a broad central depres­
sion often nearly at the same elevation as the surrounding country. They 
usually show maximum growth on the leeward side. Individual tuff beds 
forming the cone dip both inward and outward, those in the high part of the 
rim approaching the angle of repose. Tuff cones are believed to be there­
suit of hydroexplosions caused when lava erupts under water or water­
saturated rocks close to the surface. In form tuff cones, or tuff rings, bear 
a general resemblance to moors. 

Diatreme: A general term given to funnel-shaped or pipelike volcanic 
vents that are filled with angular fragments of many sizes of the rock types 
through which the pipe passes. In some there is no trace of magmatic ma­
terial, but in others basaltic tuffs are present. An explosion crater is the 
surface expression of a diatreme .. The term should probably be restricted to 
er9ded features where only the pipe or the pipe-filling breccia remains. 

The term maar is becoming more popular and is being used increasingiy 
to describe these explosion craters with rims built of volcanic tuffs and 
breccias, even though no lakes were present. The term is qlso utilized for 
the volcanic processes that form this type of crater. 

Tuff cone (or tuff ring) seems to be a more descriptive term l howeverl 
and is probably more nearly correct for describing the south-central Oregon 
structures where high rims of layered tuffs and breccias are present. These 
two terms, then l maar and tuff ring will be used interchangeably for the 
features in south-central Oregon. 

Maar or Tuff Ring Field Identification 

Genera I types 

Most of the central Oregon maar/tuff-ring features are similar and 
probably resulted from almost identical volcanic explosive processes. On 
tbe basis of the ones examined so for, there are enough differences in in­
dividual Occurrences so they can be classified into three general types: 

1. Simple maars: Circular or roughly circular craters surrounded by 
rims made up of steeply dipping l thin to thick layers of pyroclastic rocks. 
Excellent examples of this type are Hole-in-the-Ground and Big Hole l 
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shown in figure 1. As this type becomes more dissected and its original 
crater obliterated, the layers of tuff are usually exposed as low, curving 
hogback ridges that show their original ring shape, or as bold cliffs with a 
roughly circular shape, such as Fort Rock, shown in figure 2. 

2. Simple maars modified by later lava: In this type, the conditions 
necessary for violent explosive activity ceased after a timer and the craters 
were filled by quiet extrusion with basaltic lava, which in some cases over­
flowed the rims and poured down the sides. Erosion of this type results in 
a lava-capped hill or butte surrounded by inward-dipping layers of explo­
sion tuffs. Typical of maars of this type in the Fort Rock valley are Flat 
Top, shown in figure 3, and Table Mountain, in figure 4. 

3. Complex maars: Where individual explosive vents were closely a­
ligned or spaced, the tuff layers from separate explosions are superimposed 
on one another. Erosion of these complexes results in oval to elongate 
ridges of the layered tuffs with anomalous attitudes. A good example of 
this type can be seen in the large mass which makes up Table Rock near 
Silver Lake. This massive ridge is about 5 miles long and 3~ miles wide 
and covers about 15 square miles with bold erosional outcrops of layered 
basaltic explosion tuffs. 

Surface expression 

The landforms thcitstill retain crater depressions are the easiest to rec­
ognize, and so far two have been found in the Fort Rock-Christmas Lake 
valley. Hole-in-the-Ground has a crater almost a mile in diameter and 
Big Hole, 1~ miles in diameter. Williams (1935) has reported three tuff 
rings within the Newberry caldera, one of which still has a saucer-shaped 
crater. The surface expression of eroded outcrops of the others examined 
indicates that this size is probably about the minimum, and where they oc­
cur in clusters they formed much larger masses. 

'Thickness of the layered tuffs 

The layered tuffs and breccias at the rim crest of Hole-in-the-Ground 
are only about 150 feet thick, and they thin rapidly in all directions away 
from the crater. At Fort Rock (figure 2) the eroded cI iffs show at least 300 
feet of the thinly layered tuffs, indicating that either it was originally much 
larger than Hole-in-the-Ground, or that it had higher rims. At Table Rock 
near Si Iver Lake, the explosion tuffs make up most of the highest point, 
which is more than 1,000 feet above the surrounding plain. 
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Figure 1. E.ample. of typical simple moors. (0) Aerial view of Hole -in-the-Ground , 
showing truneated edges of the older rocks through which the vent wos dri lled. 
A small lake probably once fi lled Ihe crater . (b) Aerial view of Big Hole . Walls 
and rim ore composed entirely of thin loyers of basaltic lapilli tuffs and breccias. 
Crater depression is brood and shallow. 

Figure 2. Fort Rock, an eroded remnant of a once mueh lorger moor. The steep dirk 
expose hundreds of thin loyers of typical basaltic explosion tuffs. We ll developed 
wove- cut terraces were formed by Pleistocene lake. 



Figure 3. Flat Top, a remnant of a modified, simple maar. layers of tawny basaltic 
tuffs dip beneath a basalt copping that orig ina lly fi ll ed the crater. 

Figure 4 . Table Mountain, illustrating a closer view of the contact of crater- filling 
lava with slightly baked, undisturbed tuffs which dip inward toward the crater . 



Composition and structure of the tuffs 

Thin layers of vitric lithic tuffs are present in all the maar/tuff-ring 
features and are perhaps the best criteria for their identification. Colors 
range from gray to drab yellows and browns, but are usually tawny. Tuffs 
of this type are composed of a variety of angular volcanic rock fragments 
in a matrix of fine, frothy basaltic glass. The fragments vary in size from 
microscopic shards to Jarge blocks as much as 10 feet in diameter (figures 
5 and 6), with lapilli sizes most abundant. The glassy nature of the 
groundmass in most of the explosion tuffs is easily recognized with a 
hand lens. 

The tuffs and breccias almost always show a thin layering even though 
the rock fragments are large. This layering results from powerful sporadic 
shbwers of ejected material that drop directly into place. Cross bedding, 
channeling, and other sedimentary features resembling those of waterlaid 
deposits are 10caUy present. Some layers are deformed by the larger frag­
ments and blocks that have fallen directly on them. 

Dips are steepest at rim crests and some approach 30 degrees, which is 
probably near the angle of repose for fragmental rocks such as these. In­
ward dipping tuffs may be seen at both Flat Top and at Table Mountain 
(figures 3 and 4), where they have been protected from erosion by a cap­
ping of lava that filled the original craters of brood tuff rings. 

The quaquaversal dips of differentially eroded layers of tuff can usual­
ly be seen even where dissection has been intense (figure 2). The commi­
nuted ash from the explosions may have been very hot , and there may have 
been slight initial fusing or sintering in some of the layers. The moist en­
vironment and pozzolanic nature of the groundmass also may have resulted 
in almost immediate induration of the tuff layers. 

In some places hoodoos, pedestals, and other irregular shapes so typi­
cal of badlands topography are formed by differential erosion. At Moffitt 
Butte adjacent to Oregon highway 31 these erosional features are common 
(figure 7). 

Microscopic character 

Brief examinations·of a few thin sections reveal that the groundmass is _ 
made up of microvesicular basaltic glass fragments and shards which are al­
most completely altered to palagonite. Small, broken crystals of calcic 
feldspar and olivine are also present. Round vesicles are abundant (figure 
8L and many of them, as well as the voids between the shards, are filled 
with calcite and zeolites. 
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Volcanic Processes in Maar Formation 

A review of the literature on moors in other regions of the United States 
and elsewhere in the world brings out four common characteristics: (1) moors· 
have occurred in a hydrous environment, with surface water or a high water 
table present during their eruptive history; (2) a distinctive layering of the 
ejecta mode up of both magmatic and occidental material indicates that 
they were formed by relatively short, successive exp10sive ejections; (3) 
there are present accidental rock fragments, some quite lorge, which have 
been brought up from a considerable depth by the expulsion of large quan­
tities of gases through the conduit or diatreme from the underlying magma 
source; and (4) the composition of the magmatic addition is generally mafic, 
in many cases an alkalic type basalt. 

Any satisfactory explanation of the mechanisms or processes for the 
formation of maar-type volcanoes should recognize these four criteria. 
Numerous authors have advanced theories of maar formation ranging from 
the gaseous emissions of a magma to steam explOsion due solely to contact 
of meteori c water wi th hot magma at depth. 0 thets tend to the collapse, 
or caldera, hypothesis as the main process after the formation of a tuff ring. 
In general, most authors seem to recognize that explosive eruptions are in­
volved. 

Shoemaker (1962) believes the gases from a magma, once they have 
drilled a vent or diatreme to the surface, go into a state of surging similar 
to the action of a geyser. He does not consider the presence of water as 
significant. The viol~nt emission of these gases enlarges the conduit pro­
viding the accidental ejecta, and with additions from the magma builds the 
maari subsequent subsidence and slumping enlarges the crater after eruptive 
activity has ceased. 

Stearns (Stearns and Vaksvik, 1935), on the other hand, believes the 
contact of hot intruding magma with surface water or water-saturated rock 
is the main causal agent. He envisions a catastrophic explosion by this 
method which produces the initial crater. Material collapsing from the 
crater tends to plug the vent, then, with the entrance of more water, an­
other steam blast occurs as contact is made with heated rock. Coupled 
with this is the sudden relief of pressure on the magma column, setting up 
a violent vesiculation which produces the pyroclastic component. This is 
repeated unti I the energy suppl ied by the magma is exhausted. Cited also 
in support of this "phreatomagmatic" origin of the Oahu, Hawaii, moors 
IS the fact that all occur close to the sea. Stearns (1926) also has noted the 
relationship of maars and ground water in the Mud Lake area of Idaho. Lee 
(1907) believed this same mechanism to be the cause of the Afton Craters, 
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Figure 5 . Enormous occidental block of porphyritic basalt lying near the crest of the 
east rim of Hole-in-the-Ground. 

Figure 6 . Closeup of Horning Bend showing thin layers and intimate mixing of angular 
rock frogments. The tuffs at this location contain a high percentage of occidental 
glossy rhyolite. 



Figure 7. Hoodoo and bodlands type of erosional landforms at Moffitt Butte. These 
and other differential weathering features are characteristic. 

Figure 8. Micro-photograph of basaltic (palogonite) tuff showing the microvesicular 
nature of the groundmass, which is composed of fragments and shards of yellow­
brown basaltic glass. 



New Mexico. In his study of the Hopi Buttes area diatremes( and r'emnant 
maars, Hack (1942) has postulated the II phreatomagmatic ll origin of these 
features which are closely associated with the Pliocene sedimentation of that 
region. 

Jahns (1959), in his study of the Pinacate Craters in Sonora, Mexico, 
postulates the formation of a large tuff breccia cone by explosive action of 
a vesiculating iT!agma on a catastrophic scale. When this magmatic energy 
is expended, collapse and foundering into the partially evacuated magma 
chamber results in the formation of a caldera. Since the Pinacate Craters 
belt is confined to only a part of a large volcanic field containing hundreds 
of cinder cones. Jahns also cites Stearns' (Stearns and Vaksvik, 1935) the­
ory as a possible alternate explanation. 

A different view of the formation of a maar is offered by Mueller and 
Veyl (1957) by their observations of the eruption of a new maar called 
Nilahue Maar, in Chile. It is their contention that the pyroclastics mak­
ing up the maar cone were formed from fusion of the rock originally con­
tained in the crater by the enormous quantity of hot gases expelled and that 
no addition of magmatic material took place. Added to this was also un­
fused accidental ejecta of the rocks penetrated by the vent. Thearizingon 
the origin of the maar, they believe gases which accumulate at the top of 
an intruding magma erupt through the overlying rock and continue their 
spasmodi c expulsions unti I exhausted. Surface water, and presumably ground 
water (although they do not specifically mention ground water), breaching 
the weak ash· barrier and flowing into the vent help to keep it open by sec­
ondary steam blasts. Otherwise, in the absence of water, they believe a 
regular pyroclastic cone would be bui It which would place a damping ef­
fect on the gases escaping, this in turn allowing the cone to grow by keep­
ing the ejecta close to the vent. 

All of these hypotheses attempt to explain the causes for the charac­
teristic features of maars, but there are still many questions which are not 
completely answered. The one point that most authors do agree on is that 
violent expulsion of gases is an important requirement in maar volcanism. 

The writers' studies and field work on the maarsdiscovered to date in 
south-central Oregon strongly point to a hydrous environment existing at 
the time of their formation. Many probably erupted into the shallow lakes 
present throughout this· region during the Pliocene and Pleistocene epochs. 
Others were formed in the areas where the water table was near the surface 
around the lakes and in the drainage system of the region. In.-such an en­
vironment it can well be expected that magma and/or the volatiles heating 
fractured and porous water-bearing rock would produce a phreatic or steam 
explosion, throwing out this rock and forming a funnel-shaped crater, as 
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advocated by Stearns (Steams and Vaksvik, 1935). Corwin and Foster {1959) 
describe an explosive eruption on Iwo Jima which occurred in such a man­
ner. 

The numerous beds of crudely sorted ejecta which make up a maar or 
tuff ring indicate a similar number of ejecta falls, each expelled essential­
ly as a unit. Each bed apparently was explosively ejected in a short inter­
val of time with a relatively quiescent period between successive eruptions. 
The observations of Mueller and Veyl (1957) confirm this evidence. Yet 
these short, violent eruptions, of perhaps 20 or 30 minutes duration, do 
not seem to be satisfactorily explained solely by ground or surface water 
contacting heated rock, the magma, or its volatiles. After the initial 
phreatic explosion, the major share of energy must be derived from the mag­
ma, mainly its hot gases. Some mechanism that causes a plugging or stop­
page between successive eruptions seems to be a necessary requirement. A 
point that has not been previously emphasized in the maar volcanic proc­
ess is possibly the influence of the wide crater, a feature common to all 
maars. After phreatic eruption forms the initial crater, part of the fallback 
would tend to plug the vent until increased gas pressure could blow this 
material out agQin. As the crater widens with repeated new eruptions, a 
greater portion of the fallback is collected and funnered into the vent. Thus 
a temporary plugging by a load of loose material falling back into a wide 
crater may be of major importance in maar volcanism. Stearns (Stearns and 
Vaksvik, 1935) advocates a similar process of plugging by fallback, but 
does not consider the importance of a wide crater in relation to this action. 
The infiltration of surface and ground water into. the lower and hotter 
portion of the vent may help to produce steam blasts causing further frag­
mentation of the rock and adding some energy during eruptions. Crater 
diameter enlarges to a size which is related to the maximum energy ex­
pended in the eruptive process. 

With each eruption, tremendous volumes of gases must be generated by 
an explosive frothing of the magma. A fluid, mafic .magma carrying vol­
atiles would permit this action more readily than a viscous one. Thiswould 
~ccount for the glassy, vesicular ash of basaltic composition typfcally pres­
ent as the magmatic addition in the maars of south-centrarOregon. Ex­
pulsion of a large volume of gases also can be expected to provide a high 
velocity streaming through the conduit. This streaming of gases carries 
rock broken from the walls up the conduit. Some quite large blocks are 
brought from considerable depths in this manner. Fragments of rock trans­
ported from depths of several thousand feet have been reported- in studies of 

- maars and diatremes of other localities (Hack, 1942, and Shoemaker, 1956). 
The fragments are probably brought to the surfac~ during one single eruption, 
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although some may fall back and require two or more eruptive episodes. 
As previously mentioned, the writers· study of Hole-in-the-Ground has 
pointed out that some enormous blocks have been carried up from depths 
of at I east severa I hundred feet (fi g. 5). 

After all volcanism ceases, the diameter of the crater is further in­
creased by subsidence and compaction of the material in the vent, slump 
of the crater walls, and normal erosion. 

Conclusions 

A wide distribution of maars/tuff rings occurs throughout south-central 
Oregon, and the evidence shows an association with a hydrous setting at 
the time of their formation. Studies of the Pliocene-Pleistocene rocks of 
areas not as yet examined in this region will no doubt expose many more of 
these features. At present, these peculiar volcanic structures show a pat­
tern qlong two rather ~road, northwest-trending zones which is also, as 
expected, the ~aior direction for the faults ~f this region. As additional 
maars are discovered, some modification of this pattern may be noted. 

Since accidental fragments in the tuff-breccia beds of these maars have 
been expelled from a conduit or diatreme, they provide a rough sample of 
a section of the underlying rocks. Petrographic study of these fragments r 

some of wh i ch may have been brought up from depths of severa I thousand 
feet, can confirm whether a certain known rock formation exists below. 
This may aid the geologist, for instance, in solving a structural problem 
when mapping a particular area in the vicinity of a maar. 

Many hypotheses for the volcanic processes of maar formation have 
been offered by various writers from their observations of these features. 
Generally, all who have studied maars or tuff rings agree that explosive 
eruptions are necessary to their production. The almost universal associ­
ation of maars with a water-bearing environment seems also to be an es­
sential factor. Relating this factor to the explosive volcanic process which 
forms a maar leaves many questions unsatisfactorily answered. The maars 
of south-central Oregon, ranging from those I ittle eroded to those com­
pletely dissected, present an unusual opportunity for study. 
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